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Motivation

 Due to the Financial- and Euro Crisis, the Swiss Franc appreciated against the Euro 

between 2007 to 2011.

 To avoid further appreciation Swiss National Bank (SNB) imposed a one sided peg of a 

minimum of 1.2 CHF per EURO at 6 September 2011.

 Abandoned on 15 January 2015, causing large appreciation of the Swiss Franc against 

the Euro.



Motivation

 Economic reasoning: Protecting domestic currency from appreciation is always 

credible, central bank can print unlimited amounts of its own currency.

 But: Costly, when the appreciation pressure is large plus danger of possible 

balance sheet losses due to foreign currency devaluation in case of termination.

 Given the termination of the peg four years after the implementation, credibility 

question arises.

→ We use Over-the-Counter (OTC) market options on CHF/EUR exchange 

rate to calculate forward looking option implied probability density 

functions (PDF).

→ PDFs allow to calculate the market beliefs regarding future existence of 

the peg, to investigate its credibility.

→ In addition, investigation of forecasting performance of those market 

beliefs.
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Related Literature: CHF/EUR Floor

 Hertrich and Zimmermann (2015): Break probability from an option pricing 

model, which imposes an hypothetical exchange rate for the case the peg is 

abandoned. → Not fully credible (break probability up to 50%).

 Jermann (2015) and Hanke et al. (2015): Break probability from an option 

pricing model, where a latent CHF/EUR spot rate without floor is modeled. 

→ Large credibility (break probability most of the time around 10%-20%).

 Mirkov et al. (2016): Estimate model based option implied densities for 

CHF/EUR and test how verbal interventions have changed market views. 

→ Verbal interventions of SNB increased credibility of the peg.

 Contribution:

→ Estimating a term structure of market beliefs.

→ Analysis of break probabilities and higher order moments.

→ Testing whether forward looking PDFs can be used for accurate

forecasting during the peg.
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Call Option Prices: Market Conventions

 In OTC markets prices of FX call options are quoted in terms of their Black-

Scholes implied volatility, 𝜎𝑡.

 Moneyness: Difference between strike price, 𝑋, and actual market price 𝑆𝑡 :

→ At-the-money (ATM) call (put): 𝑆𝑡 = 𝑋.

→ Out-of-the-money (OTM) call (put): 𝑆𝑡 < 𝑋 𝑆𝑡 > 𝑋 .

→ In-the-Money (ITM) call (put): vice versa to OTM. 

 For FX options, moneyness is measured by the call options delta, with domestic 

and foreign interest rates 𝑟𝑡 and 𝑟𝑡
∗ and time to maturity 𝜏:

𝛿𝐶𝑎𝑙𝑙 ≡
𝜕𝐶𝐵𝑆
𝜕𝑆𝑡

= 𝑒𝑟𝑡
∗𝜏Φ

ln
𝑆𝑡
𝑋

+ 𝑟𝑡 − 𝑟𝑡
∗ +

𝜎𝑡
2

𝜏

𝜎𝑡 𝜏
∈ 0,1

 Put-call parity: 𝛿𝑝𝑢𝑡 = 1 − 𝛿𝑐𝑎𝑙𝑙, hence 𝜎25𝛿𝑝,𝑡 = 𝜎75𝛿𝑐,𝑡

 ATM options have 𝛿𝐶𝑎𝑙𝑙=𝛿𝑝𝑢𝑡 = 0.5, OTM options have 𝛿𝐶𝑎𝑙𝑙 < 0.5 and 𝛿𝑝𝑢𝑡 >

0.5

 The further an option is OTM the larger is its implied volatility

→ volatility smile, 𝜎𝑡 𝛿 , for 𝛿 ≡ 𝛿𝑐𝑎𝑙𝑙 .
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Call Option Prices and Risk Neutral Densities

 Under the assumption of risk neutral pricing Breeden and Litzenberger (1978) 

derive the option implied density for a continuum of strike prices 𝑋:

𝑐 𝑡, 𝑋, 𝑇 = 𝑒−𝑟𝑡𝜏 
0

+∞

𝑆𝑇 − 𝑋 𝜋𝑡
𝜏 𝑆𝑇 𝑑𝑆𝑇

→
𝜕2𝑐 𝑡,𝑋,𝑇

𝜕𝑋2 = 𝑒−𝑟𝑡𝜏𝜋𝑡
𝜏 𝑋

↔ 𝜋𝑡
𝜏 𝑋 = 𝑒𝑟𝑡𝜏

𝜕2𝑐 𝑡,𝑋,𝑇

𝜕𝑋2 .

 𝑟𝑡 domestic risk free interest rate, 𝜏 time to maturity, 𝑇 expiration date and 𝑆𝑇
exchange rate at expiration date.

 Due to possible risk aversion risk neutral PDFs are different from real world 

PDFs, but:

→ Hanke et al. (2015) and Mirkov et al. (2016): For FX markets risk 

neutral and real world probabilities and confidence bands are almost the 

same.

 Calibration of real world PDFs later on, after presentation of risk neutral PDFs.
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Parametric Density Calculation I

 To apply Breeden and Litzenberger (1978) one would need a continuum of 

strike prices, which in reality does not exist.

 Malz (1997): Quadratic approximation of the volatility smile in 𝜎-𝛿 space and 

conversion to 𝜎-X space to get continuum of X.

 For approximation using three option bundles that characterize the shape of 

the volatility smile and the PDF:

ATM-Straddle: 𝑎𝑡𝑚𝑡 = 𝜎50𝛿𝑐,𝑡 + 𝜎50𝛿𝑝,𝑡 → level

25𝛿 Risk Reversal: 𝑟𝑟25𝛿,𝑡 = 𝜎25𝛿𝑐,𝑡 − 𝜎25𝛿𝑝,𝑡 → symmetry

25𝛿 Butterfly: 𝑏𝑓25𝛿,𝑡 =
𝜎25𝛿𝑐,𝑡+𝜎25𝛿𝑝,𝑡

2
− 𝑎𝑡𝑚𝑡 → curvature
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Parametric Density Calculation II

 ATM-Straddle: 𝑎𝑡𝑚𝑡 = 𝜎50𝛿𝑐,𝑡 + 𝜎50𝛿𝑝,𝑡

 Becomes profitable, whenever the exchange rate moves in any direction.

 𝑎𝑡𝑚𝑡↑ →higher level of volatility smile and larger variance of PDF.
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Parametric Density Calculation III

 25𝛿 Risk Reversal: 𝑟𝑟25𝛿,𝑡 = 𝜎25𝛿𝑐,𝑡 − 𝜎25𝛿𝑝,𝑡

 Becomes profitable, whenever the exchange rate moves in a specific direction.

 𝑟𝑟25𝛿,𝑡>0 (<0)→ positive (negative) skewness of volatility smile and PDF.
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Parametric Density Calculation IV

 25𝛿 Butterfly: 𝑏𝑓25𝛿,𝑡 =
𝜎25𝛿𝑐,𝑡+𝜎25𝛿𝑝,𝑡

2
− 𝑎𝑡𝑚𝑡

 Becomes profitable, whenever there is a large move of the exchange rate in any

direction.

 𝑏𝑓25𝛿,𝑡 > 0→ Volatility smile with larger curvature and leptokurtotic PDF.
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Parametric Density Calculation V

 Quadratic approximation of the volatility smile:

𝜎25𝛿,𝑡 𝛿 = 𝑏0𝑎𝑡𝑚𝑡 + 𝑏1𝑟𝑟25𝛿,𝑡 𝛿 − 0.5 + 𝑏2𝑏𝑓25𝛿,𝑡 𝛿 − 0.5 2

→ (𝑏0, 𝑏1, 𝑏2) = (1,−2, 16)

 Resulting system of equations:

𝜎25𝛿,𝑡 𝛿 = 𝑏0𝑎𝑡𝑚𝑡 + 𝑏1𝑟𝑟25𝛿,𝑡 𝛿 − 0.5 + 𝑏2𝑏𝑓25𝛿,𝑡 𝛿 − 0.5 2

𝛿 = 𝑒𝑟𝑡
∗𝜏Φ

ln
𝑆𝑡
𝑋

+ 𝑟𝑡−𝑟𝑡
∗+

𝜎25𝛿,𝑡
2

𝜏

𝜎25𝛿,𝑡 𝜏

 Two equations with two unknowns: 𝑋 and 𝜎25𝛿,𝑡 𝛿

 Solving the system nurmerically ⇒ 𝜎25𝛿,𝑡(𝑋)

12



Parametric Density Calculation VI

 Calculate risk neutral density, for a given 𝜏 :

Second derivative of 𝐶𝐵𝑆,𝑡 𝜎25𝛿,𝑡 𝑋 ≡ 𝐶𝐵𝑆,𝑡 𝑋 .

 Approximate the second derivative by the second order difference quotient:

𝜕2𝐶𝐵𝑆 𝑡, 𝑋, 𝑇

𝜕𝑋2
≈
𝐶𝐵𝑆,𝑡 𝑋 + ℎ + 𝐶𝐵𝑆,𝑡 𝑋 − ℎ − 2𝐶𝐵𝑆,𝑡 𝑋

ℎ2

→ 𝜋𝑡
𝜏 𝑋 ≈ 𝑒𝑟𝑡𝜏

𝐶𝐵𝑆,𝑡 𝑋 + ℎ + 𝐶𝐵𝑆,𝑡 𝑋 − ℎ − 2𝐶𝐵𝑆,𝑡 𝑋

ℎ2
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Forward Looking Parametric Densities
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Non-Parametric Density Calculation I

 Parametric approach: Approximate volatility smile as quadratic function of 𝛿.

→ Main disadvantage: Approximates volatility smile with only 3 data points.

→ Nowadays option prices with more delta values other than 25% 

available.

 Non-parametric approach of Malz (2014) uses a clamped cubic spline to 

interpolate as many points as desired.

 A clamped cubic spline function interpolates a set of data points, 

{ 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛)}, such that the resulting function is continuously 

differentiable at the nodes.
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𝑦 𝑥 =  

𝑥1 𝑓𝑜𝑟 𝑥 < 𝑥1
𝑓 𝑥 𝑓𝑜𝑟 𝑥1 ≤ 𝑥 < 𝑥𝑛

𝑥𝑛 𝑓𝑜𝑟 𝑥 ≥ 𝑥𝑛



Non-Parametric Density Calculation II

 Seven data points are interpolated: 𝑎𝑡𝑚𝑡, 10%, 25% and 35% delta put and call 

implied volatilities:

𝜎𝑥𝛿𝑐,𝑡 = 𝑎𝑡𝑚𝑡 + 𝑏𝑓𝑥𝛿,𝑡 + 0.5𝑟𝑟𝑥𝛿,𝑡
𝜎𝑥𝛿𝑝,𝑡 = 𝑎𝑡𝑚𝑡 + 𝑏𝑓𝑥𝛿,𝑡 − 0.5𝑟𝑟𝑥𝛿,𝑡

 Spline function interpolates between deltas of 10% and 90%, hence 

extrapolation has to be done to calculate the entire volatility smile.

 To avoid no arbitrage violations the interpolated function is assumed to have a 

derivative of zero at the boundary points 10%, 𝜎10% 𝛿𝑐,𝑡 and 90%, 𝜎10% 𝛿𝑝,𝑡 .

 Result: non-parametric function, 𝜎𝑡(𝛿), representing the volatility smile.
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Non-Parametric Density Calculation III

 Substitute 𝜎𝑡(𝛿) into the call-delta function:

𝛿 = 𝑒𝑟𝑡
∗𝜏Φ

ln
𝑆𝑡
𝑋

+ 𝑟𝑡−𝑟𝑡
∗+

𝜎𝑡(𝛿)

2
𝜏

𝜎𝑡 𝜏
(3)

 Only unknown 𝑋 solve (3) numerically for 𝜎 → 𝜎𝑡 𝑋 .

 For given 𝜏, 𝜎𝑡 𝑋 can be substituted into the Black-Scholes call price formula, 

𝐶𝐵𝑆,𝑡 𝜎𝑡 𝑋 ≡ 𝐶𝐵𝑆,𝑡 𝑋 .

 Numerical differentiation by second order difference quotient to obtain the 𝜏 -

months forward looking risk neutral non-parametric density:

𝜕2𝐶𝐵𝑆 𝑡, 𝑋, 𝑇

𝜕𝑋2
≈
𝐶𝐵𝑆,𝑡 𝑋 + ℎ + 𝐶𝐵𝑆,𝑡 𝑋 − ℎ − 2𝐶𝐵𝑆,𝑡 𝑋

ℎ2

→ 𝜋𝑡
𝜏 𝑋 ≈ 𝑒𝑟𝑡𝜏

𝐶𝐵𝑆,𝑡 𝑋 + ℎ + 𝐶𝐵𝑆,𝑡 𝑋 − ℎ − 2𝐶𝐵𝑆,𝑡 𝑋

ℎ2
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Forward Looking Non-Parametric Densities
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Real World Densities I

 Jackwerth (2000): Risk neutral probability is equal to the real world probability 

times a risk aversion adjustment.

 To model the relationship between risk-neutral densities (RNDs, 𝜋𝑡
𝜏 𝑋 ) and 

real-world densities (RWDs, 𝑞𝑡
𝜏 𝑋 ) one can make assumptions about risk 

preferences.

 Bliss and Panigirtzoglou (2004) use CRRA utility function with relative risk 

aversion parameter 𝜌:

𝑢 𝑥 =
𝑥1−𝜌−1

1−𝜌
(4)

 General relationship between 𝑞𝑡
𝜏 𝑥 and 𝜋𝑡

𝜏 𝑥 , derived by Ait-Sahalia and Lo 

(2000) with application of CRRA utility function by Bliss and Panigirtzoglou

(2004) :

𝑞𝑡
𝜏 𝑥 =

𝜋𝑡
𝜏 𝑥

𝑢′(𝑥)

 0
∞𝜋𝑡

𝜏 𝑦

𝑢′(𝑦)
𝑑𝑦

=
𝑥𝜌𝜋𝑡

𝜏 𝑥

 0
∞
𝑦𝜌𝜋𝑡

𝜏 𝑦 𝑑𝑦
(5)
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Real World Densities II

 A plausible assumption is that the relative risk aversion parameter is in the 

range of 3 < 𝜌 < 10.

 Bliss and Panigirtzoglou (2004) and Liu et al. (2007): 2 < 𝜌 < 4.

 Mehra and Prescott (1985) imposed an upper bound of 𝜌 = 10.

 One Month ahead parametric and non-parametric RNDs and RWDs for 

different parameters:
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Real World Densities III
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 3 Months ahead parametric and non-parametric RNDs and RWDs for different 

parameters:



Credibility Analysis: Break Probabilities

 Since RNDs and RWDs are close to each other, RNDs are a reasonable proxy for 

market sentiment.

 Each days expected probability of going below 1.20 CHF per Euro within the 

next 𝜏-months is calculated:

𝑃𝑡
𝜏 𝑆𝑡 < 1.2 =  

0

1.2

𝜋𝑡
𝜏 𝑆𝑡 𝑑𝑆𝑡

 When break probability is significantly above 50%, the Swiss Franc Floor is 

incredible.

 When break probability is around or close to 50%, there are doubts about 

future existence.
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Credibility Analysis: Break Probabilities
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Credibility Analysis: Spot Rate vs. Break 

Probabilities I

 Sample period: 06/09/2011 to 14/01/2015.
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Credibility Analysis: Spot Rate vs. Break 

Probabilities II
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 OLS estimates of slope coefficient of: 𝑆𝑡 = 𝛼 + 𝛽 𝑥𝑡
𝜏 + 𝜖𝑡

 𝑆𝑡 is the time 𝑡 spot exchange rate and 𝑥𝑡
𝜏 is the 𝜏-month forward looking 

parametric break probability.

 Sample period: 06/09/2011 to 14/01/2015.

1-M Prob 3-M Prob 6-M Prob 12-M Prob

Coefficient -0.0814 -0.1137 -0.1900 -0.3054

𝑃-𝑉𝑎𝑙𝑢𝑒 (0.000) (0.000) (0.000) (0.000)

𝑅2 0.8809 0.8871 0.9413 0.8280



Credibility Analysis: Skewness and Excess 

Kurtosis

 To get a deeper understanding of how market views regarding credibility have 

evolved over time each days expected skewness and excess kurtosis are 

calculated:

𝑠𝑘𝑡
𝜏 = 𝐸

𝑋 − 𝐸 𝑋

𝜎

3

=  
0

+∞ 𝑥 − 𝐸 𝑋
3

𝜎3
𝜋𝑡
𝜏(𝑥)𝑑𝑥

𝑒𝑥𝑡
𝜏 = 𝐸

𝑋 − 𝐸 𝑋

𝜎

4

− 3 =  
0

+∞ 𝑥 − 𝐸 𝑋
4

𝜎4
𝜋𝑡
𝜏 𝑥 𝑑𝑥 − 3

 Positive (negative) skewness: Market considers further depreciation 

(appreciation) of CHF against EUR as more possible.

 Larger excess kurtosis: Market considers large moves in both directions as more 

possible.

 Together:

→ 𝑠𝑘𝑡
𝜏 ≪ 0 and 𝑒𝑥𝑡

𝜏 ≫ 0: Large appreciation is considered as more possible than 

large depreciation.
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Credibility Analysis: Skewness and Excess 

Kurtosis
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Forecasting Setup and Evaluation: Introduction

 Investigation whether option variables can outperform the naive random walk 

in terms of point forecasting.

 Conducting point forecast evaluation by MSE superiority tests and 

encompassing tests in the style of Clark and McCracken(2001).

 Testing directional forecasting ability by test procedure of Pesaran and 

Timmermann (1992).

 Interpreting the parametric and non-parametric PDFs as density forecasts.

 Testing density forecasts by applying test procedure of Berkowitz(2001). 
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Forecasting Setup and Evaluation: Related Literature

 Studies that examine the information content of FX option based measures on 

exchange rates:

→ Campa and Chang (1996), Malz (1996), Haas et al. (2006): Option 

implied measures provide useful information during ERM crises of 1992.

→ Campa et al. (1998): positive correlation between skewness and the 

spot rate for USD/DM and USD/Yen.

→ Bates (1996): higher order option implied moments contain significant 

information for the future USD/DM exchange rate.

 For our point forecasts:

→ Focus on break probabilities, because these aggregate the properties of 

the density in one number.
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Forecasting Setup and Evaluation: Point 

Forecasts
 5 days daily data, one month has approximately 22 days.

 Recursive forecasting scheme. One step ahead out of sample random walk 

forecast vs. error correction forecast.

 Forecasting models take option maturity into account:

𝐸𝑡−22𝜏 𝑠𝑡 − 𝑠𝑡−22𝜏 = 0 → 𝑀𝑆𝐸1

𝑠𝑡 − 𝑠𝑡−22𝜏 = 𝛼 + 𝛽 𝑠𝑡−22𝜏 − 𝛾0 − 𝛾1𝑥𝑡−22𝜏 + 𝜖𝑡 → 𝑀𝑆𝐸2

 Nested models, therefore evaluation by test procedure of Clark and 

McCracken(2001):

→ MSE superiority: One-sided t-test with null-hypothesis:

𝑀𝑆𝐸1 ≤ 𝑀𝑆𝐸2
→ Encompassing: One sided t-test with null-hypothesis:

𝐶𝑜𝑣(𝑀𝑆𝐸1, (𝑀𝑆𝐸1 −𝑀𝑆𝐸2)) ≤ 0

 The tests follow non-standard limiting distributions.
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Results: Point Forecasts

 Notes: 5%-Critical Values 1 Month (3 Months): MSE-F=0.966(1.045), MSE-

t=0.241(0.268), ENC-F=3.418(3.384), ENC- t=1.386(1.392).

 In-sample period 1 Month and 3 Months: 06/10/2011 to 04/06/2012 and 

07/12/2011 to 03/08/2012.

 Out-of-sample period 1 Month and 3 Months: 05/06/2012 to 14/01/2015 and 

04/08/2012 to 14/01/2015.

31

ME MAE RMSE MSE MSE-F MSE-t ENC-F ENC-t

1 Month

Random 

Walk

0.00205 0.49413 0.75550 0.57078 ---- ---- ---- ----

Para -0.1923 0.57418 0.78121 0.61030 -44.099 -1.958 37.617* 3.0463*

Non-Para -0.1984 0.58024 0.79012 0.62428 -58.361 -2.609 29.506* 2.454*

3 Months

Random 

Walk

0.01748 0.72141 0.93931 0.88229 ---- ---- ---- ----

Para -0.2394 0.99949 1.17723 1.38587 -231.46 -12.930 -46.276 -5.5691

Non-Para -0.2070 0.94647 1.13585 1.29017 -201.38 -12.399 -43.456 -5.8043



Forecasting Setup and Evaluation: Directional 

Density Forecasts
 Non-parametric test of directional forecasting ability of Pesaran and 

Timmermann (1992):

→ Tests whether the sign of the 𝜏-month return, 

𝑅𝑡−22𝜏 = ln 𝑆𝑡 − ln 𝑆𝑡−22𝜏 , is predicted correctly by a variable Δ𝑋𝑡−22𝜏:

𝑅𝑡−22𝜏 = 𝛽Δ𝑋𝑡−22𝜏 + 𝜖𝑡 (3)

 Compares the fraction of right directional forecasts of (3), denoted by  𝑃, with

the fraction of co-movements of 𝑅𝑡−22𝜏 and Δ𝑋𝑡−22𝜏, denoted by  𝑃∗.

 Under the null that 𝑅𝑡−22𝜏 is independent from Δ𝑋𝑡−22𝜏,  𝑃 shouldn‘t differ from
 𝑃∗. Test-statistic:

𝑃𝑇 =
 𝑃 −  𝑃∗

𝑣𝑎𝑟  𝑃 − 𝑣𝑎𝑟( 𝑃∗)
→ 𝑁(0,1)
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Results: Pesaran-Timmermann Test

 Pesaran/Timmermann Test,1 and 3-Months Maturity:

 One month parametric break probabilities are able to predict the right sign of 

the one month return.

 All other specifications are not.

 All in all, directional forecasting ability is questionable
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Parametric Non-Parametric

1 Month 3 Months 1 Month 3 Months

2.0422* 1.0538 1.3235 1.4324

Note: 5%-Critical Value: 1.96



Forecasting Setup and Evaluation: Density 

Forecasts
 Berkowitz (2001) test, to evaluate quality of a density forecast.

 Probability Integral Transformation (PIT):

𝑧𝑡 =  
0

𝑆𝑡+22𝜏

𝜋𝑡
𝜏 𝑥 𝑑𝑥

→ If density forecast is correct 𝑦𝑡 = Φ−1 𝑧𝑡 ~ 𝑖𝑖𝑑 𝑁 0,1 .

 Estimate: 𝑦𝑡 − 𝜇 = 𝛼 𝑦𝑡−1 − 𝜇 + 𝜖𝑡 , 𝜖𝑡~𝑖𝑖𝑑 𝑁(0,1).

 Likelihood-ratio test: 𝐿𝑅3 = −2 𝐿 0,1,0 − 𝐿  𝜇,  𝜎2,  𝛼 ~ 𝜒(3)
2 .

 For Berkowitz(2001) test the densities are not allowed to be overlapping in 

maturities, otherwise there would be by construction serial correlation in the 

𝑧𝑡’s.

 Hence for 1-month maturity only 39 non-overlapping densities are left during 

the peg. For 3-month maturity only 13 and so on.

→ Conducting Berkowitz(2001) test only for 1-month maturity.
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Results: Berkowitz Test

 Berkowitz Test, 1-Month Maturity:

 Null is rejected, hence one month forward looking PDFs are not able to predict 

the full range of exchange rate realizations and corresponding probabilities 

correctly.

 PDFs can be used as barometer of market sentiment but not as good density 

forecasts.
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Parametric PDF Non-Parametric PDF

𝐿𝑅3 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐
42.01 60.27

(0.00) (0.00)

Notes: H0: {yt}~iid N 0,1 ;Under the validity of the null hypothesis the test statistic

follows a χ2(3) distribution; p-values are in parenthesis.



Conclusion

 Swiss Franc floor was more credible over shorter horizons, but never fully 

credible as break probabilities for longer maturities as six and twelve months 

remain large.

 During turbulent times in 2012 and 2014 all densities indicate that markets 

believed a 50:50 chance of continuation.

 Over time and with longer horizons confidence in the SNB's commitment 

decreased.

 For the one-month parametric and non-parametric break probabilities ECM has 

an informational advantage over the random walk, but not for three months.

 Directional forecast test indicates that break probabilities are not really able to 

predict the right sign of the exchange rate movement.

 Density forecasts are not able to predict accurately. Therefore option implied 

PDFs can be seen as a barometer of market sentiment, but financial market 

prices do not incorporate additional information for the full range of exchange 

rate realizations.
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