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Productivity Distribution and Selection Effects
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Figure: When you observe everything
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Left Tail (bottom 95%) : Pareto or Log-normal?
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Data Pareto Log-normal

Figure: Empirical and Parametric p.d.f.’s (Left Tail)
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Figure: Empirical and Parametric p.d.f.’s (Left Tail)



Right Tail (top 5%) : Pareto or Log-normal?
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Figure: Empirical and Parametric p.d.f.’s (Right Tail)



Right Tail (top 5%) : Pareto or Log-normal?
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Figure: Empirical and Parametric p.d.f.’s (Right Tail)



Right Tail (top 5%) : Pareto or Log-normal?

1.5 2.0 2.5 3.0 3.5 4.0
0

0.5

1.0

1.5

2.0

2.5

φ

P
ro
b
a
b
il
it
y
D
en
si
ty

F
u
n
ct
io
n

0 0.2 0.4 0.6 0.8 1.0 1.2
0

0.5

1.0

1.5

2.0

2.5

x

P
ro
b
a
b
il
it
y
D
en
si
ty

F
u
n
ct
io
n

 

 

Data Pareto Log-normal

4 5 6 7

Figure: Empirical and Parametric p.d.f.’s (Right Tail)



Pareto or Log-normal?

Three main observations:

I Pareto does not capture the shape of the left tail

I Log-normal underpredicts the thickness of the right tail

I Neither captures the empirical distribution over the entire
support



So what?

Are deviations from the empirical distribution harmful?

I Both (un-)bounded Pareto and Log-normal lead to significant
errors in trade outcomes:

I Welfare gains from trade

I Extensive margin of trade

I Intensive margin of trade

Why?

I Efficiency distribution determines magnitude of the selection
effects:

I Entry and exporting

I Available varieties and their prices
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Contribution of this paper

This paper proposes using a mixed distribution dubbed Two-piece.
The distribution has several advantages:

I Models left tail as Log-normal (captures bell shape)

I Models right tail as Pareto (captures fat right tail)

I Fits the data considerably better than (un-)bounded Pareto
and Log-normal almost everywhere

I Produces negligible errors in the estimates of the gains from
trade and other trade outcomes

I Still parametric, tractable and well-behaved distribution

Large and rich literature on both Pareto and Log-normal in trade!
Lit.Review



Log-normal meets Pareto

Following Cooray and Ananda (2005) and Scollnik (2005) start
with:

fL(φ) =
1√

2πsφ
e−

1
2 ( lnφ−µ

s )
2

and fP(φ) =
αθα

φα+1
. (1)

Derive Two-piece distribution by imposing the following conditions:

I Random variable φ follows Log-normal up to a threshold, θ,
and Pareto after that

I Two-piece is a well-behaved distribution:

I Continuous

I Differentiable

I p.d.f. and c.d.f. have necessary properties



Two-piece distribution

The resulting distribution has the following c.d.f. :

F (φ) =


p̄

Φ[αs(α, p̄)]
Φ

(
αs(α, p̄) +

lnφ− ln θ

s(α, p̄)

)
for φ ∈ (0, θ]

1− (1− p̄)
θα

φα
for φ ∈ [θ,∞),

and p.d.f. :

f (φ) =


p̄

Φ[αs(α, p̄)]

1√
2πs(α, p̄)φ

e
− 1

2

(
αs(α,p̄)− ln θ−lnφ

s(α,p̄)

)2

for φ ∈ (0, θ]

(1− p̄)
αθα

φα+1
for φ ∈ [θ,∞),



Two-piece distribution

Φ(·) is c.d.f. of standard normal and s(p̄, α) is an implicit function
which defines s given p̄ and α according to:

Φ [αs(α, p̄)]
√

2π[αs(α, p̄)]e
1
2 [αs(α,p̄)]2

=
p̄

1− p̄
.

The Two-piece distribution is characterized by the following
parameters:

I First scale parameter, θ, identifies the cut-off point

I Second scale parameter, p̄, identifies the share of population
that follows Log-normal

I Shape parameter, α, comes from the original Pareto
distribution.



Parameterized example

Set θ = 1, p̄ = 0.95, α = 3. Choose parameters of Log-normal and
Pareto to match the first two moments.
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with identical first two moments



Estimation

The data come from ORBIS and cover almost 1 mln. French
entities in 2012.

1. Keep all firms in the production sectors.

2. Calculate domestic sales as total sales net of export revenues

3. Calculate productivity distribution

4. Generate 100,000 quantiles (for numerical purposes)

I This grid covers c.d.f. on the support [0.00001; 0.99999]



QQ-estimator

The estimator solves the following:

min
Θ`

{∑
q

(ln [Qe(q)]− ln [Q`(q|Θ`)])2

}
, (2)

where

I q is the grid of the c.d.f. 100,000 data points in
[0.00001; 0.99999]

I Qe(q) the empirical quantile function evaluated at q.

I Q`(q) is the parametric quantile function of type ` evaluated
at q.

I Θ` is the vector of parameters of the parametric function of
type ` to estimate



Results I: Fit on different intervals of the support

Parameters Root Mean Squared Error

(I) (II) (III) All Bot. 1% Bot. 5% Top 5% Top 1%

Two-piece 3.033 1.185 0.938 0.058 0.465 0.221 0.026 0.033

(0.006) (0.005) (0.001)

Log-normal 0.569 -0.701 0.069 0.415 0.194 0.156 0.304

(0.001) (0.001)

Pareto 1.914 0.294 0.236 1.405 0.840 0.344 0.648

(0.005) (0.001)

B. Pareto 0.372 0.214 1.438 0.183 1.105 0.582 0.406 0.799

(0.026) (0.001) (0.015)

Table notes: In the case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and
(III) refer to the scale parameters, θ and ρ, respectively; in the case of the Log-normal distribution, (I) and (II)
refer to the scale and location parameters; in the case of the Pareto, (i) and (II) refer to the shape and scale
parameters; in the case of the Bounded Pareto distribution, (I) refers to the shape parameter and (II) and (III)
to two location parameters. All parameters are estimated using 100,000 quantile data points.

Table: Estimation Results



Results II: p.d.f.
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Workhorse Heterogeneous Trade Model

The model is standard and follows Arkolakis, Demidova, Klenow
and Rodŕıguez-Clare (2008) and only slightly deviate from
Arkolakis, Costinot and Rodŕıguez-Clare (2012), and Melitz and
Redding (2014).

I CES preferences

I Labor is the only factor of production: Li

I Variable and fixed cost of exporting: τij and fij

I Fixed cost of entry: f ei

I Productivity is randomly drawn upon paying f ei : φ

I Free entry, markets clear



Workhorse Heterogeneous Trade Model

The model’s solution for J countries is governed by 2× J
equations. The first set of 1× J equation comes from the Free
entry condition:

∑
j∈J

∫ φ̄
φ∗
ij

wj fij (φ
∗
ij )1−σ

φ
σ−1f (φ)dφ−

∫ φ̄
φ∗
ij

wj fij f (φ)dφ

 = wi f
e
i ,

The second set of 1× J equations comes from the Labor market
clearing condition:

Ni

1− F (φ∗ii )

∑
j∈J

 (σ − 1)wj

wi

fij (φ
∗
ij )1−σ

∫ φ̄
φ∗
ij

φ
σ−1f (φ)dφ + f ei

 +
∑
j∈J

Nj

1− F (φ∗jj )
fji

∫ φ̄
φ∗
ji

f (φ)dφ = Li .



Solution

The solution of the system depends on two selection statistics:

I 1− F (φ∗ij) which measures the probability of firms from i
being active in j for all i , j

I
∫ φ̄
φ∗ij
φσ−1f (φ)dφ, which is required to calculate total revenues

of firms from i in market j for all i , j

I Third statistics
∫ φ̄
φ∗ij

f (φ)dφ is redundant due to the following

identity:∫ φ̄

φ∗ij

f (φ)dφ =

∫ φ̄

0

f (φ)dφ−
∫ φ∗ij

0

f (φ)dφ = 1− F (φ∗ij).



Benchmark

Results under all parametric distributions will be compared to
those under numerical benchmark:

I 1− F (φ∗ij) is calculated by using empirical c.d.f. in a
non-parametric form

I
∫ φ̄
φ∗ij
φσ−1f (φ)dφ is calculated by numerical trapezoidal

integration



Parameterization of the model

Without loss of generality, the model’s primitives are chosen as
follows:

Parameter J L1 L2 f e1 f e2 f11 f22 σ

2 100 50 1 1 0.001 0.001 4

Table: Primitives of the model

Simplistic but general framework, amenable to increasing the
number of countries/sectors.



Counterfactual experiments

Define changes in consumer welfare as τ gradually goes from 3 to
1:

Welfare Gains = 100%×
(
wi (τ)

Pi (τ)

Pi (τ
′)

wi (τ ′)
− 1

)
,

Define error in the estimates of the welfare gains from trade of
parametric model ` as:

Error` = Welfare Gains(τ ′)−Welfare Gains`(τ
′),

` = Two-piece, Log-normal, (un-)bounded Pareto.



Experiment 1: Falling τij at high fij
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Figure: Benchmark welfare gains and errors: Experiment 1



Experiment 2: Falling τij at low fij
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Figure: Benchmark welfare gains and errors: Experiment 2



Other trade outcomes

Researchers are often interested in two other trade statistics:
intensive and extensive margins of trade. define mean squared
errors as follows:.

MSE`(λ) =

√√√√ 1

J

∑
j

(
λjj − λjj,`

)2
; MSE`(χ) =

√√√√ 1

J

∑
j

(
χj − χj,`

)2
,

where λjj is the share of intra-trade (governs intensive margin) and
χij is the share of exporters (extensive margin).



Other trade outcomes

Repeat Experiments 1 and 2 and calculate mean squared errors
under four parametric distributions.

Variable Share of intratrade Share of Exporters

τij for i 6= j 3.0 2.4 1.8 1.2 3.0 2.4 1.8 1.2

E
xp

.
1

Two-piece 1.57 2.69 5.02 7.53 0.04 0.08 0.20 1.85

Log-normal 31.38 51.16 78.91 81.65 2.29 7.80 27.77 93.02

Bounded Pareto 12.72 22.06 40.39 63.01 0.51 1.02 2.25 7.20

Pareto 37.30 71.05 121.29 75.83 0.75 1.51 26.44 155.79

E
xp

.
2

Two-piece 1.49 2.59 4.57 6.67 0.27 0.76 2.41 6.32

Log-normal 21.61 29.11 33.42 22.13 23.66 54.58 126.29 265.54

Bounded Pareto 14.79 25.99 48.96 80.46 1.92 3.88 9.25 23.73

Pareto 35.13 34.51 29.28 16.23 8.67 91.78 197.69 326.43

Table notes: For expositional purposes, due to the fractional nature of the variables the results are reported in
one thousandths.

Table: Mean Squared Errors in The Share of Intratrade
and Exporters



If time permits

Several extensions and sensitivity checks:

1. Comparing to 3-parameter distributions 3-param. distr.

2. Alternative weighting scheme Weighting

3. Removing data points at the extremes Extreme data points

4. Testing for sensitivity to the choice of the country Other countries

5. Alternative measures of productivity Other measures of φ

6. Truncation of the Two-piece distribution Truncation

7. External Validity: City Size Distribution Out of sample test



Thank you!



Three-parameter distributions

Generalized Pareto and Three-parameter Log-normal c.d.f.s:

FGP(φ) = 1−
(

1 +
η(φ− ψ)

ξ

)−1/η

and FTLN(φ) = Φ

(
ln(φ− ν)− µ

δ

)
,

Parameters Root Mean Squared Error

(I) (II) (III) All Bot. 1% Bot.m 5% Top 5% Top 1%

Generalized Pareto 5.399 -0.081 0.424 0.144 1.011 0.512 0.196 0.409

(0.354) (0.006) (0.003)

3 P. Log-Normal 0.518 -0.608 -0.042 0.067 0.252 0.120 0.195 0.367

(0.004) (0.009) (0.004)

Table notes: (I), (II) and (III) refer to the shape, location and scale parameters. All parameters are estimated using
100,000 quantile data points.

Table: Estimation Results (Alternative Parametric
Distributions) Back to main



Extreme data points

Remove 1000 largest data points from the right:

Parameters Root Mean Squared Error

(I) (II) (III) All Bot. 1% Bot. 5% Top 5% Top 1%

Two-piece 3.338 1.326 0.959 0.060 0.457 0.217 0.073 0.133

(0.023) (0.012) (0.001)

Log-normal 0.564 -0.704 0.064 0.425 0.199 0.113 0.192

(0.001) (0.001)

Pareto 1.945 0.296 0.240 1.411 0.845 0.382 0.755

(0.005) (0.001)

B. Pareto 0.274 0.209 1.373 0.177 1.086 0.567 0.378 0.704

(0.025) (0.001) (0.012)

Table notes: In the case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and
(III) refer to the scale parameters, θ and ρ, respectively; in the case of the Log-normal distribution, (I) and
(II) refer to the scale and location parameters; in case of the Pareto, (i) and (II) refer to the shape and scale
parameters; in the case of the Bounded Pareto distribution, (I) refers to the shape parameter and (II) and (III)
to two location parameters. All parameters are estimated using 100,000 quantile data points.

Table: Truncated Distribution (from the right)



Extreme data points

Remove 1000 smallest data points from the left: Back to main

Parameters Root Mean Squared Error

(I) (II) (III) All Bot. 1% Bot. 5% Top 5% Top 1%

Two-piece 2.983 1.133 0.930 0.044 0.308 0.156 0.028 0.041

(0.004) (0.003) (0.001)

Log-normal 0.563 -0.698 0.060 0.249 0.122 0.165 0.317

(0.001) (0.001)

Pareto 1.923 0.296 0.224 1.242 0.780 0.339 0.639

(0.004) (0.001)

B. Pareto 0.460 0.220 1.479 0.171 0.956 0.530 0.388 0.773

(0.022) (0.001) (0.014)

Table notes: In the case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and
(III) refer to the scale parameters, θ and ρ, respectively; in the case of the Log-normal distribution, (I) and
(II) refer to the scale and location parameters; in case of the Pareto, (i) and (II) refer to the shape and scale
parameters; in the case of the Bounded Pareto distribution, (I) refers to the shape parameter and (II) and (III)
to two location parameters. All parameters are estimated using 100,000 quantile data points.

Table: Truncated Distribution (from the left)



Other countries
Country Parameters Root Mean Squared Error

(I) (II) (III) Two-piece Log-normal Pareto Bounded Pareto

France 2.880 1.057 0.923 0.053 0.070 0.228 0.181

(0.006) (0.004) (0.001)

Italy 3.820 2.463 0.993 0.068 0.068 0.308 0.191

(0.018) (0.025) (0.001)

Japan 2.723 1.143 0.921 0.043 0.060 0.215 0.143

(0.014) (0.009) (0.002)

Norway 3.842 3.088 0.997 0.064 0.064 0.345 0.182

(0.025) (0.042) (0.000)

Portugal 2.637 0.925 0.885 0.038 0.070 0.198 0.154

(0.008) (0.004) (0.001)

Spain 3.049 1.308 0.952 0.053 0.061 0.247 0.181

(0.008) (0.006) (0.001)

Sweden 3.471 2.035 0.988 0.071 0.073 0.317 0.195

(0.014) (0.015) (0.001)

Average 3.065 1.648 0.955 0.052 0.062 0.276 0.182

Table notes: In the case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and
(III) refer to the scale parameters, θ and ρ, respectively; in the case of the Log-normal distribution, (I) and (II)
refer to the scale and location parameters; in the case of the Pareto, (i) and (II) refer to the shape and scale
parameters; in the case of the Bounded Pareto distribution, (I) refers to the shape parameter and (II) and (III)
to two location parameters. All parameters are estimated using 100,000 quantile data points.

Table: Estimation Results for Different Countries



Alternative measure of productivity

So far, I’ve looked at measures consistent with Melitz (2003). This
measure would not be accurate under:

I Variable mark-ups

I Bernard, Eaton, Jensen and Kortum (2003), Melitz and
Ottaviano (2008), Simonovska (2015), Edmond, Midrigan and
Xu (2015)

I Second dimension of heterogeneity across firms:

I Egger and Kreickemeier (2009), Bustos (2011) and many
others.

Unfortunately, the data don’t allow deriving measures of φ under
these conditions (no wage data, no mark-up data). Instead, I use a
cost-based approach.



Alternative measure of productivity

I use data on total cost of goods sold and total cost of employees
in Japan 2012 (219,454 observations) to calibrate the productivity
parameter from the following relationship:

c(φ)q =
w(φ)q

φ
,

where c(φ)q and w(φ)q are observed total cost of goods sold and
observed cost of employees, respectively.



Alternative measure of productivity

Parameters Root Mean Squared Error

(I) (II) (III) All Bot. 1% Bot. 5% Top 5% Top 1%

Two-piece 1.997 1.224 0.773 0.162 1.491 0.673 0.166 0.362

(0.009) (0.014) (0.005)

Log-normal 0.621 -0.177 0.210 1.319 0.621 0.558 1.154

(0.002) (0.001)

Pareto 1.653 0.457 0.252 2.208 1.056 0.197 0.266

(0.003) (0.001)

B. Pareto 1.653 0.457 (2.E+09) 0.252 2.208 1.056 0.197 0.266

(0.003) (0.001) (4.E+09)

Table notes: In the case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and
(III) refer to the scale parameters, θ and ρ, respectively; in the case of the Log-normal distribution, (I) and (II)
refer to the scale and location parameters; in the case of the Pareto, (i) and (II) refer to the shape and scale
parameters; in the case of the Bounded Pareto distribution, (I) refers to the shape parameter and (II) and (III)
to two location parameters. All parameters are estimated using 100,000 quantile data points.

Table: Measure of productivity under variable markups



Truncation of the Two-piece distribution

Such an extension would be straightforward and would require
mixing the following two p.d.f.s:

fL(φ) =
1√

2πsφ
e−

1
2 ( lnφ−µ

s )2

and fBP(φ) =
αθαφ−α−1

1− θαφ−αh

,

where φh would serve as an upper bound.

Back to main



External validity test

Debate about Pareto vs. Log-normal is not unique to International
Trade. Long history in the literature on the city size distribution:

I Gabaix (1999, QJE) – Upper tail is Pareto

I Eeckhout (2004, AER) – But Log-normal fits the data better
over the whole support

I Levy (2009, AER) – Yes but the tail is not Log-normal at all.
Look at the top 0.6 percent of the largest cities in the
QQ-plot!

I Eeckhout (2009, AER) – Yes but who cares about top 0.6
percent. Fitting the distribution on top 0.6 percent of
observations only is useless.



Applying Two-Piece to Eeckhout (2009) data

Parameters Root Mean Squared Error

(I) (II) (III) All Bot. 1% Bot. 5% Top 5% Top 1%

Two-piece 1.205 6.178 0.978 0.089 0.209 0.222 0.155 0.256

(0.034) (0.774) (0.003)

Log-normal 1.751 -1.738 0.099 0.257 0.261 0.191 0.322

(0.001) (0.001)

Pareto 0.619 0.035 0.679 2.909 1.900 1.412 2.728

(0.004) (0.001)

B. Pareto 0.126 0.013 5.264 0.354 1.932 1.029 0.868 1.745

(0.006) (0.001) (0.136)

Table notes: In case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and (III)
refer to the scale parameters, θ and ρ, respectively; in case of the Log-normal distribution, (I) and (II) refer to
the scale and location parameters; in case of the Pareto, (i) and (II) refer to the shape and scale parameters;
in case of the Bounded Pareto distribution, (I) refers to the shape parameter and (II) and (III) to two location
parameters. All parameters are estimated using 100,000 quantile data points.

Table: Estimation Results for the City Size Distribution



Applying Two-Piece to Eeckhout (2009) data
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Figure: City size c.d.f: Two-piece and Log-normal vs. Data
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Pareto or Lognormal? Related literature

Why one may choose Pareto:

I Many firm-specific outcomes follow Pareto (at least in the
upper tail):

I Simon and Bonini (1958), Luttmer (2007), Axtell (2001),
Gabaix (2008), Levchenko and di Giovanni (2012).

I By far the most popular choice in quantitative models:

I Following Baldwin (2005) and Chaney (2008), hundreds of
papers use Pareto, e.g., Melitz and Ottaviano (2008),
Arkolakis, Costinot and Rodŕıguez-Clare (2012), Melitz and
Redding (2014) and many others.

I Elegant and easy to handle analytically



Pareto or Log-normal? Related literature

Why one may choose Log-normal:

I Fits the data better on a larger interval of the support
(> 90%):

I Head, Mayer and Thoenig (2014), Freund and Pierola (2015)

I Leads to non-linear trade elasticities which is supported by the
data:

I Yang (2014) and Bas, Mayer and Thoenig (2015), and
Fernandes, Klenow, Meleshchuk, Pierola, and Rodŕıguez-Clare
(2015)

I Not as elegant as Pareto but still tractable



Pareto vs. Log-normal? Theoretical literature

The paper is related to:

I Arkolakis (2015) shows how endogenous growth processes can
lead to mixture distribution of productivities.

I Mrazova, Neary and Parenti (2015) show how different
assumptions about the structure of demand and technology
affect distribution of firms outcomes.

I Papers when the choice between Pareto and Log-normal is
unclear, e.g., debate about the city size distribution Gabaix
(1999), Eeckhout (2004, 2009) and Levy (2009).

Back to main



Alternative weighting

I employ an alternative weighting scheme which weights
observations according to their size in the data using the following
estimator:

min
Θ`

{∑
q

Qe(q)

(
ln [Qe(q)]− ln [Q`(q|Θ`)]

)2
}
, (3)

Giving larger weights to observations in the right tail does not alter
the main results, i.e., the Two-piece distribution still dominates the
alternatives according to the size of the RMSE along the entire
support and especially in the right tail.



Parameters Root Mean Squared Error

(I) (II) (III) All Bot. 1% Bot. 5% Top 5% Top 1%

Two-piece 3.005 1.119 0.929 0.059 0.505 0.246 0.034 0.035

0.014 0.009 0.002

Log-normal 0.607 -0.710 0.080 0.318 0.159 0.102 0.216

0.002 0.000

Pareto 2.419 0.351 0.269 1.576 1.001 0.099 0.209

0.013 0.001

B. Pareto 2.012 0.320 4.447 0.236 1.487 0.917 0.123 0.183

0.033 0.002 0.296

Table notes: In the case of the Two-piece distribution, parameter (I) refers to the shape parameter, α, (II) and
(III) refer to the scale parameters, θ and ρ, respectively; in the case of the Log-normal distribution, (I) and (II)
refer to the scale and location parameters; in the case of the Pareto, (i) and (II) refer to the shape and scale
parameters; in the case of the Bounded Pareto distribution, (I) refers to the shape parameter and (II) and (III)
to two location parameters. All parameters are estimated using 100,000 quantile data points.

Table: Estimation Results under Alternative Weighting
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