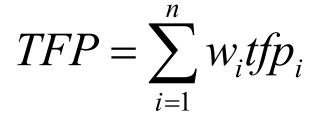
EXPORTS AND PRODUCTIVITY THE ISSUE OF CAUSALITY

Richard Kneller

University of Nottingham, GEP, CESIfo

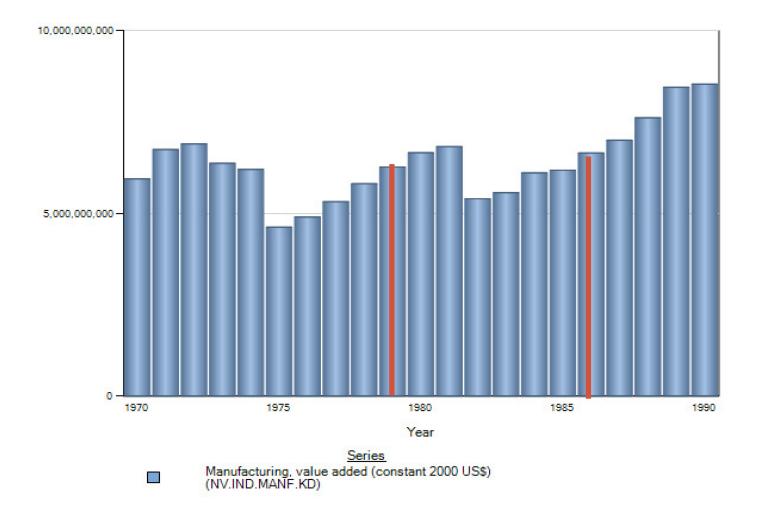
Outline


- Introduction
 - Macro Literature
 - Aggregate Micro Productivity
 - Focus of this presentation
- Learning by exporting
- Productivity Investment and Exporting
- Learning to export
- Conclusions

Macro Literature

- Exports and productivity at the macro level usually found in the literature on 'openness and growth'
- (Usually) a positive correlation
- Explanations include
 - Economies of scale
 - Learning by exporting
 - Competition effects
 - Quality upgrading
 - Imports
- Issue of causality
 - Simultaneity bias
 - Omitted variable bias
- Micro data a cure?

Aggregate Micro Productivity


- Aggregate productivity of an industry is a weighted average of individual firms productivity
- TFP is aggregate productivity, w is the size of the firm and tfp is the firm productivity level.
- Aggregate TFP growth can occur from:
 - within firm growth
 - between firm growth
 - net entry
 - across industries.

Focus of this presentation

- Micro data a cure? No
- Solves simultaneity, but not selection or OVB
- That said, controversy confined to literature on changes to productivity within firms
- Evidence that exporters account for a disproportionate share of output/employment
 - Bernard and Jensen (2004) show that Can-US FTA raised average manufacturing productivity by 4.1%
- Melitz (2003) suggests pull of export markets not push of import competition forces exit. Evidence that trade liberalisation encourages the weakest to die
 - Trefler (2004) and Lileeva (2008) cut in Canadian tariffs led to exit in import competing sectors. As these were low productivity, productivity in manufacturing rose by 4.3%.
 - Pavcnik (2002) following trade liberalisation in Chile, exiting firms were 8% less productive than survivors (on average) – 35% of cohort in 1979 were dead by 1986

Aggregate productivity rise?

- The relationship between exporting and productivity at the firm level (within firm growth)
- Strong evidence they are positively correlated
- Selection or Causal effect?
- Earliest literature about self-selection versus learning
- Bernard and Jensen (1999) found that productivity growth of exporters not significantly different from that of nonexporters.
- The productivity distribution is not widening over time. Learning effects are not permanent.
- Self-selection seen as the dominant explanation (accounting for Melitz's model).

- Focus became export market entrants
- New exporters were already among the best and their growth differed in the periods leading up to and after entry.
- After a short period they then become indistinguishable from other exporters
- Was this productivity change at the point of export market entry an exogenous improvement (just coincidence) or was it evidence of learning by exporting?
- Dominant Methodology: difference-in-differences
- In practice the hypothesis under test changed from one of self-selection versus learning, to learning conditional on self-selection versus selection.

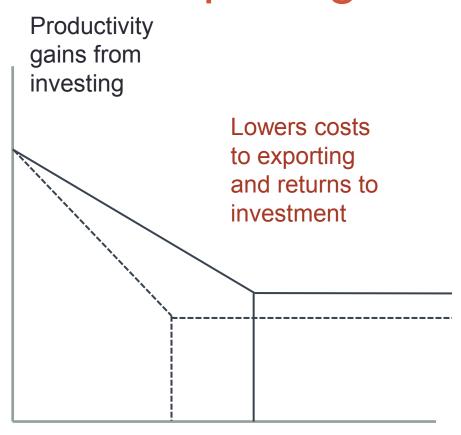
- Attempt to control for self-selection using either instrumental variable estimation (in early literature GMM) or matching techniques
- Dominant Methodology: matching combined with difference-in-differences.
- Counterfactual sub-sample of non-exporters with similar pre-entry characteristics
- Van Biesebroeck (2005) not controlling for self-selection will overstate evidence of learning for new exporters in the data.
- Of the 11 studies discussed in G&K (2007) using matching or GMM, 7 find evidence for learning and 4 against (all using matching)

Effect of Export Market Entry on Firm Performance for a Matched and Unmatched Sample

of Firms.							
	All time	Pre-Entry	Entry Period	Entry t+1	Entry t+2		
	periods						
		Unmatched					
Export		0.029	0.044	0.036	0.018		
Premium		(4.56)**	(5.02)**	(5.21)**	(2.36)*		
Observations		18106	19266	18047	15423		
R-squared		0.12	0.14	0.12	0.09		
			Matched				
Export	0.024	-0.002	0.036	0.015	-0.001		
Premium	(3.95)**	(0.16)	(5.16)**	(1.41)	(0.07)		
Observations	11580	2417	3470	3074	2619		
R-squared	0.13	0.17	0.23	0.07	0.09		

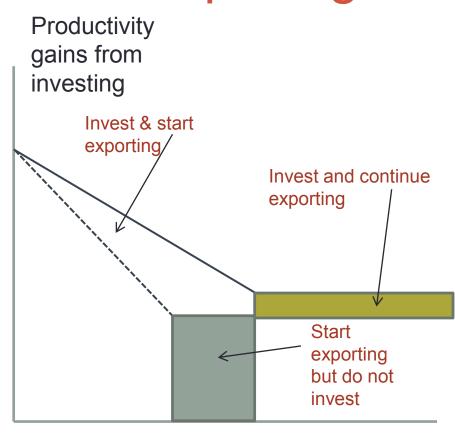
Controlling for self-selection removes the pre-entry difference in productivity growth between new exporters and non-exporters and reduces the magnitude of the postentry effects.

Girma, Greenaway and Kneller (2003)

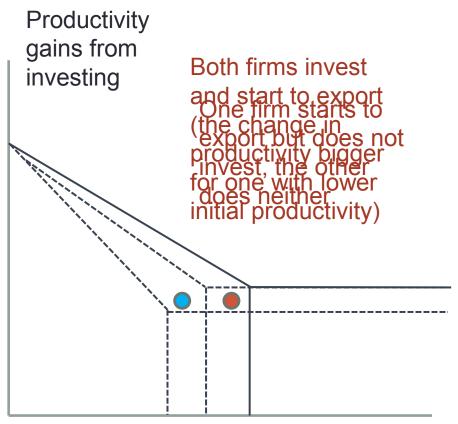

A problem with matching

- So learning (even conditional on self-selection) not a consistent outcome. Why?
- Learning from particular markets? In particular industries?
- Exporting is not a treatment omitted variable bias
- Decision to become an exporter is the treatment not the point where export sales begin
- Decision to become an exporter is unobservable (i.e. cannot match on that).
- Greater promise from an instrumental variable approach (not GMM using lags), where the instrument captures an exogenous change to the cost of exporting

- Lileeva and Trefler (QJE 2010)
- Exogenous productivity
- Fixed costs to export market entry
- Firms can invest to improve their productivity (will depend on the returns)
- There are fixed costs to these improvements
- Only invest if the returns are large



- Lileeva and Trefler (QJE 2010)
- Exogenous productivity
- Fixed costs to export market entry
- Firms can invest to improve their productivity (will depend on the returns – which includes market size)
- There are fixed costs to these improvements
- Only invest if the returns are large


Initial productivity

- Lileeva and Trefler (QJE 2010)
- Exogenous productivity
- Fixed costs to export market entry
- Firms can invest to improve their productivity (will depend on the returns – which includes market size)
- There are fixed costs to these improvements
- Only invest if the returns are large

Initial productivity

- Lileeva and Trefler (QJE 2010)
- Exogenous productivity
- Fixed costs to export market entry
- Firms can invest to improve their productivity (will depend on the returns – which includes market size)
- There are fixed costs to these improvements
- Only invest if the returns are large

Initial productivity

- Can-US FTA
- Outcome: average annual change in labour productivity between 1988 and 1996
- Firm specific tariff cut based on (6-digit) product it produces
- Untreated = non-exporters in 1984
- Treated = start to export by 1996
- Within plant productivity increases by 3.5%

	Change in LP	T-statistic
Average	0.010	15.92
Low productivity	0.017	9.87
Med-low productivity	0.015	10.30
Medium productivity	0.012	7.72
Med-high productivity	0.008	4.57
High productivity	0.003	2.44

Learning to export

- Iacavone, L. and Javorcik, B. (2010). 'Getting ready: preparation for exporting'
- Quality upgrading within a firm in anticipation of entry into export markets
- Uses unit values (price/costs) as a measure of quality
- Examines developments before and after entry into export markets during the period of an export boom
- Mexican export boom stimulated by NAFTA (1st Jan 1994) and the peso devaluation (Dec 1994).
- Use NAFTA to instrument for a future change in trade policy (should observe quality upgrading in anticipation of this)

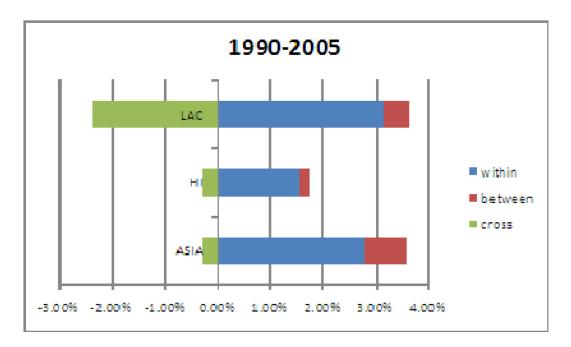
Learning to export

- 3,186 products manufactured by 6,291 Mexican manufacturing plants between 1994 and 2004. (between 12,887 and 19,154 observations per year)
- Beta 1, 2 and 3 study the price premium of exported products before they are exported
- Price premium is measured as unit value of that product compared to the same product sold by other firms
- Controls for firm-product effects (alphas)

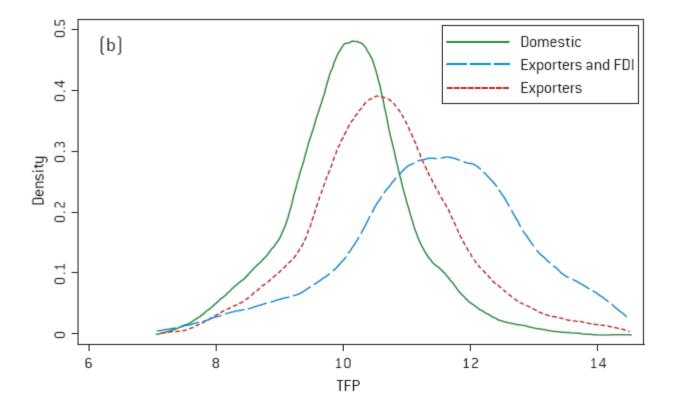
 $log (Price \ premium_{pit}) = \beta_1 \ 1 \ yr \ before \ exporting_{pit} + \beta_2 \ 2 \ yrs \ before \ exporting_{pit} + \beta_3 \ Exported_{pit} + \alpha_t \ (+\alpha_{pi}) + \mu_{pit}$ (2)

Table 4 (plant-product FE): dependent variable is price premium

	[1]	[2]	[3]
3 years before entering export markets			
2 years before entering export markets	-0.004	-0.004	-0.004
	[0.012]	[0.014]	[0.014]
1 year before entering export markets	0.029^{**}	0.029^{**}	0.029^{**}
	[0.012]	[0.011]	[0.011]
Exported product	0.031^{***}	0.031^{***}	0.031^{***}
	[0.005]	[0.008]	[0.008]
N. Observations	130170	130170	130170
R-squared	0.81	0.81	0.81
Year FE	yes	yes	yes
Plant-product FE	yes	yes	yes
Clustered SE	n.a.	plant-product	product

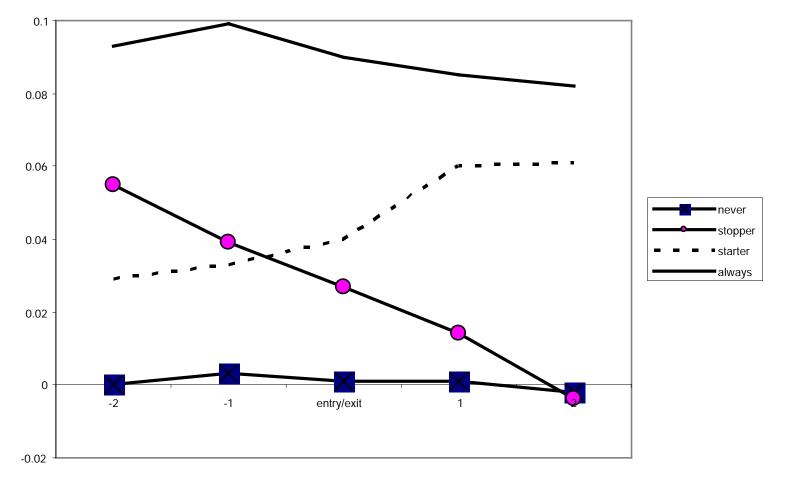

Table 8 (post entry effects): dependent variable is price premium

	[1]	[2]	[3]
1 year before entering export markets	0.032** [0.011]	0.032** [0.010]	0.032** [0.010]
1st year of exporting	0.034**	0.034***	0.034**
	[0.011]	[0.010]	[0.011]
2nd year (or later) of exporting	0.029^{***}	0.029^{***}	0.029^{***}
	[0.005]	[0.008]	[0.008]
3rd year (or later) of exporting			
N. Observations	115724	115724	115724
R-squared	0.81	0.81	0.81
Year FE	yes	yes	yes
Plant-product FE	yes	yes	yes
Clustered SE	n.a.	plant-product	product


Conclusions

- Exports and Productivity are positively correlated
- Causal?
 - Between effects simultaneous
 - Exit yes, but import competition (exporting insulates against exit)
 - Within effects selection effects clear, but some causal effect
 - Issues of methodology
 - Starting to export is not the treatment matching and/or difference in differences inappropriate (except for a sub-sample of firms)
 - Changes to the cost of exporting inducing firms to invest
 - Lileeva & Trefler study a large change more normal outcome likely to be small (not many firms, the change is not that big)
 - Cross-industry ?

Here is a chart that provides a key insight on why Latin America has done worse than Asia since 1990. The chart decomposes labor productivity growth in the two regions into three components: (i) a "within" component that is the weighted average of labor productivity growth in each sector of the economy; (ii) a "between" component that captures economy-wide gains (or losses) from the reallocation of labor between sectors with differing levels of labor productivity; and (iii) a "cross" component that measures the gains (or losses) from the reallocation of labor to sectors with above-average (below-average) productivity growth. (Danni Rodrik weblog)



Exceptional Exporters

Source: EFIM. Note: Data for Belgium 2004.

Mayer and Ottoviano (2008)

Bernard and Jensen (1999)