

The Carbon Content of International Trade: Effects of the Kyoto Protocol

Gabriel Felbermayr

LMU München und ifo Institut

FIW-Workshop
Trade and Environment
BMDW, Feb 20, 2018

TRADE AND CLIMATE POLICY

FACT 1: World merchandise imports over GDP: 25% and growing

FACT 2: No world-wide price for carbon, no world-wide carbon emission cap

- → Heterogeneous carbon policies (taxes, standards, caps, ...)
 give rise to concerns about
 - International competitiveness
 - > Environmental efficiency (carbon leakage)

CARBON LEAKAGE

Special case of *pollution haven hypothesis*

- ➤ Heterogeneous (e.g. unilateral) climate policies change patterns of comparative advantage and lead to relocation of CO₂-intensive production
 - Potential implications for all factor prices and threat of deindustrialization
 - Emission reductions in 'green' countries may be (more than)
 offset by higher emissions in 'brown' countries
- ⇒ Call for *border adjustment taxes* (BAT)

 (Sarkozy, Macron, Krugman, Waxman-Markey bill, ...)

26 YEARS OF CLIMATE DIPLOMACY

- ¶ 1992: Earth Summit, Rio de Janeiro. UN-FCCC established
 - Principle of "common but differentiated responsibility"
 - Voluntary limitations of national CO2-emissions
- ¶ 1997: Members of UN-FCCC conclude the Kyoto-Protocol
 - Binding CO2 emission targets: 5.2% below 1990 levels until
 2012
 - Rules on trade of emission permits and compensation
 - 2002-2003 Countries ratify Kyoto (not US!)
 - 2005: entry into force
- ¶ 2012: Doha Amendment prolongation of Kyoto to 2020
- ¶ 2015: Paris Agreement
- ¶ 2017: President Trump announces that US withdraw from Paris Agreement

LEARNING FROM KYOTO FOR THE FUTURE

(probably)

QUESTION 1: Was the Kyoto Protocol effective

after all?

[A&F: JPAM 2013]

YES

QUESTION 2: Did Kyoto commitment lower the

carbon footprint of nations?

NO

[A&F: JEEM 2012]

QUESTION 3: Have Kyoto commitments led to

carbon leakage?

NO

[A&F: REStat, 2015]

- ⇒ Border Adjustment Tax (≠ carbon tariff!) would make sense
 - 1. Instrument to foster coalition stability
 - 2. and to improve efficiency of carbon policies

AGENDA

Introduction

Effectiveness of Kyoto

Kyoto and the CO2 Footprint of Nations

Kyoto and Carbon leakage

ECONOMETRIC APPROACH

¶ Second-stage regressions

$$Y_{it} = \beta_0 + \beta_1 Kyoto_{it} + \beta_2 \mathbf{X}'_{it} + \alpha_t + \alpha_i + \varepsilon_{it}$$

$$Kyoto_{it} = \begin{cases} 1 \text{ ratification of emission cap and } t \ge \text{ ratification year,} \\ 0 \text{ else.} \end{cases}$$

- Pre-treatment period: 1995-2000
- Post-treatment period: 2004-2007

¶ First-stage regressions

$$Kyoto_{it} = \alpha + \gamma \mathbf{X}'_{it} + \zeta \mathbf{Z}'_{it} + \nu_i + \nu_t + \nu_{it}$$

KYOTO AND ICC MEMBERSHIP

in a large panel of countries (N=133)

Depende	ent variable: Kyoto	commitn	nent (0,1)					
	Linear probability							
Model		Long FE	Probit long					
Method	(1)	(2)	(3)	(4)	(5)			
Excluded instruments								
ICC (0,1)	0.19***	0.11***	0.10***	0.25***	0.16***			
	(0.05)	(0.04)	(0.03)	(0.07)	(0.03)			
ICC, spatial lag		0.51***	0.41***	0.37***	0.04***			
		(0.10)	(0.08)	(0.12)	(0.01)			
Other controls			yes	yes	yes			
No. of observations	1,456	1,456	1,418	266	133			
$Adj. R^2$	0.25	0.52	0.61	0.69				

Other controls: In GDP (-), In GDP squared (+), In population (-), In manuf. in % of GDP), In agriculture in % of GDP (-), In services in% GDP (+), In stock of other IEA, Government orientation, Openness (-), WTO (-), Polity (-).

KYOTO AND CO2 EMISSIONS

Dependent variable: ln CO ₂ emissions							
Method	FE-OLS (1)	FE-OLS (2)	FE-IV (3)	Long FE-OLS (4)	Long FE-IV (5)		
Kyoto (0,1)	-0.17***	-0.06**	-0.10**	-0.09**	-0.12*		
Kyoto, spatial lag	(0.03)	(0.02) 0.01** (0.01)	(0.05) 0.02*** (0.00)	(0.04) 0.03*** (0.01)	(0.07) 0.03*** (0.01)		
Other controls		yes	yes	yes	yes		
No. of observations No. of countries First-stage diagnostics	1,456 133	1,418 133	1,418 133	266 133	266 133		
Shea's partial R ² Hansen–Sargan <i>J</i> -stat (<i>P</i> -value) Weak-ID test (<i>F</i> -stat)			0.28 0.44 19.09		0.43 0.71 37.70		
Second-stage diagnostics Adj. R^2 F-stat	0.27 11.99	0.48 13.85	17.44	0.49 21.40	23.09		

CHANNELS OF THE KYOTO EFFECT, I

Panel	(A) Shares in energy use				(B) Shares in electricity production			
Dep. var.	Renew	ables	Fossi	l fuel	Coal (B1) (B2) FE-OLS FE-IV		Alternative energy	
Method	(A1) FE-OLS	(A2) FE-IV	(A3) FE-OLS	(A4) FE-IV			(B3) FE-OLS	(B4) FE-IV
Kyoto (0,1)	1.38** (0.56)	2.41*** (0.93)	-0.67 (0.63)	-2.46** (1.16)	0.12 (0.93)	-1.43 (1.76)	1.07*** (0.27)	1.66*** (0.56)
No. of observations No. of countries Shea's partial R^2 Over-ID test (P -value) Weak-ID test (F -stat)	1,180 110	1,180 110 0.26 0.68 18.80	1,180 110	1,180 110 0.26 0.47 18.80	1,180 110	1,180 110 0.26 0.60 18.80	1,180 110	1,180 110 0.26 0.63 18.80
Adj. R^2	0.29	22.20	0.17		0.06	32.20	0.17	

CHANNELS OF THE KYOTO EFFECT, II

Panel	(C)	(C) Pump prices (USD/L)				(D) Log per capita use of			
Dep. var.	Diesel fuel		Gasoline		Energy		Electricity		
Method	(C1) FE-OLS	(C2) FE-IV	(C3) FE-OLS	(C4) FE-IV	(D1) FE-OLS	(D2) FE-IV	(D3) FE-OLS	(D4) FE-IV	
Kyoto (0,1)	0.10** (0.04)	0.22*** (0.05)	0.13*** (0.04)	0.25*** (0.05)	-0.05** (0.02)	-0.05* (0.03)	-0.04 (0.03)	-0.08** (0.04)	
No. of observations No. of countries Shea's partial R^2 Over-ID test (P -value) Weak-ID test (F -stat)	608 127	608 127 0.28 0.61 20.30	608 127	608 127 0.28 0.32 20.30	1,180 110	1,180 110 0.26 0.36 18.80	1,169 109	1,169 109 0.26 0.21 18.84	
Adj. R^2	0.77		0.68		0.38		0.52		

Kyoto did affect outcomes

despite lack of enforcement and despite incomplete
and second-best implementation

AGENDA

Introduction

Effectiveness of Kyoto

Kyoto and the CO2 Footprint of Nations

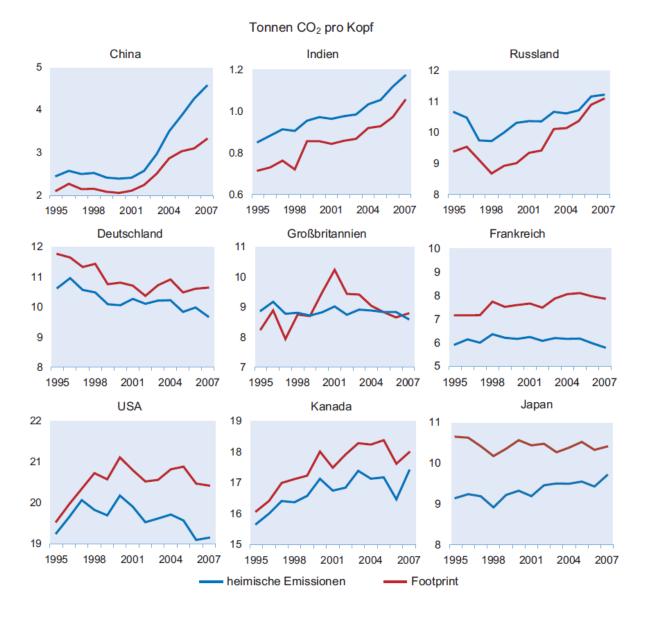
Kyoto and Carbon leakage

TRADE AND CLIMATE POLICY

International Trade

- ➤ Territorial CO₂ emissions and emissions embodied in domestic absorption (consumption, investment) [= CO₂ footprint] can diverge
 - Patterns of comparative advantage
 - Climate policies (even reciprocal / symmetric ones!)
 - Trade policies
- ➤ Generally, changes in climate policies or trade policies will affect difference between territorial emissions and footprints of nations
- > Here: Focus on Kyoto-Protocol

ESTIMATING CO₂ FOOTPRINTS


¶ Footprint F_{it} is the sum of territorial emissions E_{it} and emissions embodied in imports EET_{it}

$$F_{it} = E_{it} + EET_{it}$$

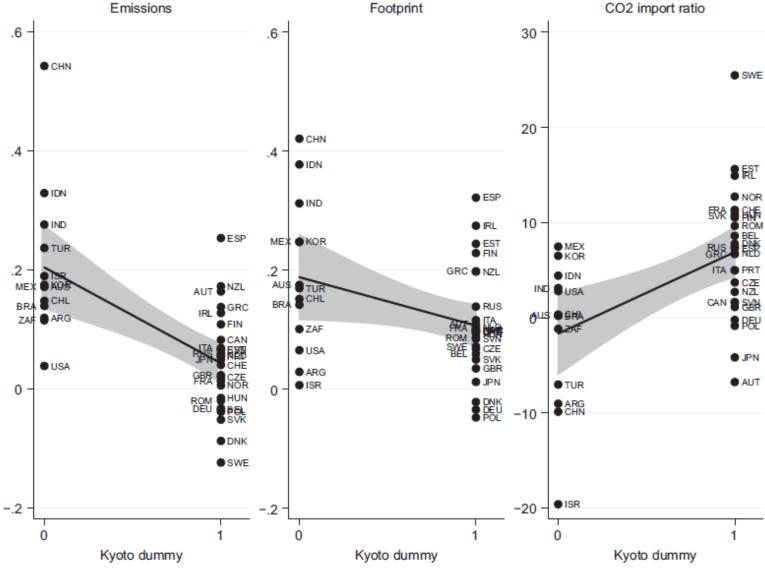
- ¶ Multi-region Input-Output (MRIO) table $\mathbf{B} \equiv [B_{ij}]$, where B_{ij} are bilateral I-O tables capturing sectoral input usage links
- \P Sectoral emission intensity vectors $m{e_i}$, and $m{e} \equiv (m{e_1} \ ... \ m{e_N})$ for the world
- ¶ Vector of total carbon intensities $A = e(I B)^{-1}$
- ¶ Net emissions embodied in trade $EET_i = AT_i$, where T_i is country i's net trade vector
- ¶ Implemented for 40 countries using OECD and UNIDO data

FOOTPRINTS & TERRITORIAL EMISSIONS

EMPIRICAL SETUP

¶ Second stage regressions

$$\Delta Outcome_{i,t} = \delta + \beta \Delta Kyoto_{i,t} + \xi \Delta \mathbf{X}'_{i,t} + v_{i,t},$$


$$Outcome_{i,t} \in \left\{ \ln E_{i,t}, \ln F_{i,t}, \frac{EET_{i,t}}{E_{i,t}} \right\},$$

Pre (1995-2000) and post-treatment (2004-2007) periods

¶ First stage regressions: as before (IV strategy ICC ratification and its spatial lag)

SIMPLE DIFF-IN-DIFF

REGRESSION ANALYSIS

Ι	Dep.var.:	(1) Emissions	(2) Footprint	(7) Emissions	(8) Footprint	(9) Imports	(10) Emissions	(11) Footprint	(12) Imports
Į	Jnits:	Log level	·	Log per cap	ita value	Share ^a	log per cap	ita value	Sharea
1	Method:	FD-OLS	FD-OLS	FD-IV	FD-IV	FD-IV	FD-IV	FD-IV	FD-IV
	Kyoto (0,1)	-0.08* (0.04)	-0.00 (0.04)	-0.08*** (0.03)	0.03 (0.04)	0.11*** (0.03)	-0.07** (0.03)	0.06 (0.05)	0.14**** (0.04)
	Log pop	1.13*** (0.36)	0.94** (0.43)						
	Log GDP China (0,1)	0.38** (0.16)	0.47*** (0.09)	0.37** (0.16)	0.49**** (0.10)	0.10 (0.09)	0.13 (0.09) 0.30***	0.36*** (0.12) 0.18***	0.21* (0.11) -0.10
I	Polity (– 10	to 10)					(0.08) 0.02* (0.01)	(0.05) 0.03**** (0.01)	(0.07) 0.01*** (0.00)
I	og stock of	other MEAs					0.10 (0.11)	0.05 (0.10)	-0.10 (0.12)
I	EU (0,1)						-0.07* (0.04)	-0.08 (0.05)	-0.01 (0.05)
5	Second stage Adj. R ²	diagnostics 0.54	0.39	0.37	0.31	0.22	0.55	0.45	0.20

Kyoto did reduce territorial CO₂ emissions, but has not affected countries' CO₂ footprints.

⇒ Non negligible role of trade

AGENDA

Introduction

Effectiveness of Kyoto

Kyoto and the CO2 Footprint of Nations

Kyoto and Carbon leakage

GRAVITY FOR CARBON

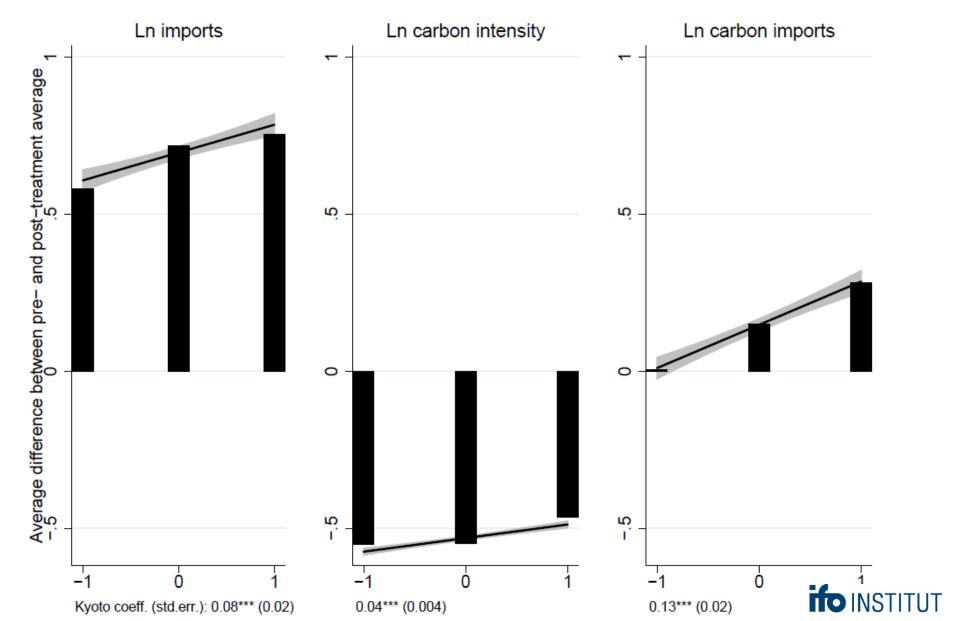
The CO_2 —content of imports of country m from x in sector s

$$\ln E_{mx}^s = \ln \eta_x^s + \ln Q_{mx}^s$$

- Q_{mx}^s: Quantity index of bilateral trade (scale effect).
 Inputs-extended standard gravity.
- $\eta_x^s \equiv \mathbf{e}_x^T \mathbf{A}_x^s : CO_2 intensity$ of imports
 - \bullet \mathbf{e}_{x} is the vector of sectoral emission coefficients
 - \mathbf{A}_{x}^{s} is the s—th column of $(\mathbf{I} \mathbf{B}_{x})^{-1}$, where \mathbf{B}_{x} is the I/O Matrix of country x
- Climate policy in m and x changes η_x^s and Q_{mx}^s

NEW DATA

- Using the theoretical model to calculate the empirical CO₂-content of bilateral imports
 - Sectoral trade data (UN Comtrade)
 - Harmonized panel of I/O Tables (OECD)
 - Sectoral output data (OECD STAN)
 - Sectoral CO₂ emissions (IEA)
- ► Ein 'three-way' panel (country pair × year × sector)
 - 40 countries, 80% of global CO₂—emissions
 - 15 sectors (12 tradeable)
 - 11 years (1997-2007)


ECONOMETRIC STRATEGY

"Long fixed-effects"=Diff-in-Diff

- ▶ Dummy $KYOTO_{mt} = 1$ if Kyoto Protocol was *ratified* in country m at time t *ratifizert* and country had committed to a binding emission ceiling
- ▶ Identification over **time vaiance** in country-sector-pairs: pre-treatment (1997-2000), post-treatment (2004-2007)
- ► Differencing eliminates bilateral and country-specific time-invariant components of trade

DIFF-IN-DIFF POOLED DATA

CAUSAL EFFECTS

sector-specific panel estimators

• Three dependent variables: $Y = (E_{mxt}, Q_{mxt}, \eta_{xt})$

$$\ln Y_{mxt} = \beta \left(KYOTO_{mt} - KYOTO_{xt} \right) + \gamma POL_{mxt}$$
$$+\nu_{x} \times \nu_{t} + \nu_{m} \times \nu_{t} + \nu_{m} \times \nu_{x} + \varepsilon_{mxt}$$

- Interactions between year and exporter/importer dummies with the objective to control for
 - ... multilateral trade costs (third country effects),
 - ... the selection of countries into the Protocol and
 - ... country-specific (and global) trends (in a non-parametric manner)
- Identification assumption

$$cov(KYOTO_{mt} - KYOTO_{xt}, \varepsilon_{mxt}|X_{mxt}) = 0$$

BASELINE RESULTS

	(1)	(2)	(3)	(4)
Dependent	Ln Imports,	Ln CO ₂ Intensity	Ln CTT,	Ln CO ₂
Variable	Q_{mx}	of Imports, η_x	η_x/η_m	Imports, E_{mx}
DKyoto _{mx}	0.050***	0.028***	-0.043***	0.078***
	(0.011)	(0.003)	(0.005)	(0.011)
Joint FTA membership	0.103***	0.010		0.113***
	(0.031)	(0.008)		(0.032)
Joint WTO membership	-0.144	-0.001		-0.144
-	(0.163)	(0.036)		(0.165)
Joint EU membership	0.019	0.019**		0.038
•	(0.035)	(0.009)		(0.035)
Country × Year Effects	Yes	Yes	Yes	Yes
Country pair-sector effects	Yes	Yes	Yes	Yes
Observations	223,499	223,499	215,917	223,499
Number of country pair-sectors	18,588	18,588	18,387	18,588
Adjusted R^2	0.206	0.709	0.036	0.074
F-statistic	46.316	879.091	11.691	15.245
RMSE	0.829	0.179	0.305	0.849

SECTOR-LEVEL RESULTS

	(1)	(2)	(3)	(4)	(5)	(6)
Dependent Variable	Ln I	mports	Ln CO ₂	Intensity	Ln CO	2 Imports
Method	FE	Long FE	FE	Long FE	FE	Long FE
(3) Basic metals	0.20***	0.21**	-0.00	0.01	0.20***	0.21**
	(0.04)	(0.08)	(0.01)	(0.01)	(0.04)	(0.08)
(9) Paper, paper products,	0.15***	0.16**	0.02***	0.04***	0.17***	0.19***
pulp and printing	(0.04)	(0.07)	(0.01)	(0.01)	(0.04)	(0.07)
(6) Transport equipment	0.15***	0.18**	0.01	0.01	0.16***	0.21**
	(0.04)	(0.08)	(0.01)	(0.02)	(0.04)	(0.09)
(7) Machinery	0.13***	0.10**	0.01	0.00	0.15***	0.11**
	(0.02)	(0.05)	(0.01)	(0.02)	(0.03)	(0.05)
(5) Other nonmetallic	0.14***	0.17***	-0.00	0.00	0.14***	0.18**
mineral products	(0.03)	(0.07)	(0.01)	(0.02)	(0.03)	(0.07)
(2) Electricity, energy,	0.08	0.14	0.05***	0.10^{***}	0.13**	0.24**
mining and quarrying	(0.06)	(0.12)	(0.01)	(0.02)	(0.06)	(0.12)
(12) Non-specified industries	-0.01	-0.02	0.09***	0.11***	0.09***	0.10**
	(0.02)	(0.04)	(0.01)	(0.02)	(0.03)	(0.05)
(4) Chemicals and	0.02	0.02	0.06***	0.07***	0.08***	0.09*
petrochemicals	(0.03)	(0.05)	(0.01)	(0.02)	(0.03)	(0.06)
(8) Food products, bever-	0.01	0.06	0.01**	0.03**	0.02	0.10
ages, tobacco	(0.03)	(0.07)	(0.01)	(0.01)	(0.04)	(0.08)
(1) Agriculture, forestry,	-0.04	-0.02	0.02***	0.06***	-0.02	0.05
fishing	(0.04)	(0.08)	(0.01)	(0.01)	(0.04)	(0.08)
(10) Wood and wood	-0.10**	-0.15	0.02**	0.05***	-0.08*	-0.09
products	(0.05)	(0.09)	(0.01)	(0.02)	(0.05)	(0.09)
(11) Textile and leather	-0.12***	-0.19***	0.02***	0.03*	-0.09***	-0.15**
	(0.03)	(0.06)	(0.01)	(0.02)	(0.03)	(0.06)

Kyoto did increase imports from non-committed countries, the carbon intensity of imports, and the carbon content of imports

IMPLICATIONS FOR POLICY

- Carbon leakage is a real possibility and it is quantitatively relevant
- ➤ Need border adjustment tax (BAT) to stabilize coalition of the willing and to improve effectiveness / efficiency
- > Common but differentiated responsibility: rebate BAT income
- ➤ New free trade agreements: link CO2-emission trading systems, harmonize CO2 taxes, allow for BAT

CURRENT ifo RESEARCH

- > Effects of FTAs on CO2 emissions worldwide
 - Ex post analysis (EU-Korea for the EU Commission)
 - Ex ante analysis, with and without BATs
- Excessive and inefficient international trade due to noninternalization of transportation related CO2 emissions: Analysis using an NQTM
- Role of trade linkages in mitigating damage caused by global warming

