Immigration, Trade and Productivity in Services: Evidence from UK Firms

Gianmarco Ottaviano, Giovanni Peri, Greg Wright

LSE & CEP, UC Davis, UC Merced

October 1, 2015
- There is a large literature relating international migration to international trade in goods – typically finding a positive relationship.
Research Question

There is a large literature relating international migration to international trade in goods – typically finding a positive relationship.

- Knowledge of origin legal system (legal services), business culture (business services), consumer habits (marketing services)

May play a role with trade in goods as well, but much more peripherally
There is a large literature relating international migration to international trade in goods – typically finding a positive relationship.

It is not clear whether we would expect the same relationship to hold with trade in services.
There is a large literature relating international migration to international trade in goods – typically finding a positive relationship.

It is not clear whether we would expect the same relationship to hold with trade in services.

Or at least the magnitudes and details may differ.
There is a large literature relating international migration to international trade in goods – typically finding a positive relationship.

It is not clear whether we would expect the same relationship to hold with trade in services.

Or at least the magnitudes and details may differ.

For instance, the content of services may interact with immigrant knowledge about their origin country, above and beyond “network effects”.

Knowledge of origin legal system (legal services), business culture (business services), consumer habits (marketing services)
There is a large literature relating international migration to international trade in goods – typically finding a positive relationship.

It is not clear whether we would expect the same relationship to hold with trade in services.

Or at least the magnitudes and details may differ.

For instance, the content of services may interact with immigrant knowledge about their origin country, above and beyond “network effects”.

- Knowledge of origin legal system (legal services), business culture (business services), consumer habits (marketing services)
There is a large literature relating international migration to international trade in goods – typically finding a positive relationship.

It is not clear whether we would expect the same relationship to hold with trade in services.

Or at least the magnitudes and details may differ.

For instance, the content of services may interact with immigrant knowledge about their origin country, above and beyond “network effects”.

- Knowledge of origin legal system (legal services), business culture (business services), consumer habits (marketing services)
- May play a role with trade in goods as well, but much more peripherally
Mechanisms

- Immigrants may promote exports and imports directly via reductions in bilateral trade barriers.
Mechanisms

- Immigrants may promote exports and imports directly via reductions in bilateral trade barriers.
 - A robust finding in the literature
Mechanisms

- Immigrants may promote exports and imports directly via reductions in bilateral trade barriers.
 - A robust finding in the literature
- Immigrants may reduce imports directly by substituting for bilateral intermediate imports (e.g., Ottaviano, Peri and Wright 2013)
Mechanisms

- Immigrants may promote exports and imports directly via reductions in bilateral trade barriers.
 - A robust finding in the literature
- Immigrants may reduce imports directly by substituting for bilateral intermediate imports (e.g., Ottaviano, Peri and Wright 2013)
- Immigrants may increase productivity directly via
Mechanisms

- Immigrants may promote exports and imports directly via reductions in bilateral trade barriers.
 - A robust finding in the literature
- Immigrants may reduce imports directly by substituting for bilateral intermediate imports (e.g., Ottaviano, Peri and Wright 2013)
- Immigrants may increase productivity directly via
 1. direct cost reduction (OPW 2013)
Mechanisms

- Immigrants may promote exports and imports directly via reductions in bilateral trade barriers.
 - A robust finding in the literature

- Immigrants may reduce imports directly by substituting for bilateral intermediate imports (e.g., Ottaviano, Peri and Wright 2013)

- Immigrants may increase productivity directly via
 1. direct cost reduction (OPW 2013)
 2. skill/task complementarities (Ottaviano and Peri 2012; Peri and Sparber 2013)
Mechanisms

- Immigrants may promote exports and imports directly via reductions in bilateral trade barriers.
 - A robust finding in the literature
- Immigrants may reduce imports directly by substituting for bilateral intermediate imports (e.g., Ottaviano, Peri and Wright 2013)
- Immigrants may increase productivity directly via
 1. direct cost reduction (OPW 2013)
 2. skill/task complementarities (Ottaviano and Peri 2012; Peri and Sparber 2013)
 3. diversity effects
Mechanisms

- Immigrants may promote exports and imports directly via reductions in bilateral trade barriers.
 - A robust finding in the literature
- Immigrants may reduce imports directly by substituting for bilateral intermediate imports (e.g., Ottaviano, Peri and Wright 2013)
- Immigrants may increase productivity directly via
 1. direct cost reduction (OPW 2013)
 2. skill/task complementarities (Ottaviano and Peri 2012; Peri and Sparber 2013)
 3. diversity effects
 - Which may promote trade by making it easier for firms to overcome fixed trade barriers
UK Balance of Trade in Goods and Services
Seasonally adjusted, quarterly trade balance, £ billion

Source: Reuters EcoWin
Outline

1 Model
2 Data
3 Specification & Identification
4 Results
Stylized facts with respect to services very similar to goods
Model

- Stylized facts with respect to services very similar to goods
 - Criscuolo and Breinlich (2010): exporters are larger, more productive
Model

- Stylized facts with respect to services very similar to goods
 - Criscuolo and Breinlich (2010): exporters are larger, more productive
- Melitz (2003) setup; partial equilibrium
Model

- Stylized facts with respect to services very similar to goods
 - Criscuolo and Breinlich (2010): exporters are larger, more productive
- Melitz (2003) setup; partial equilibrium
- Consider a single local labor market as a small, open economy
Model

- Stylized facts with respect to services very similar to goods
 - Criscuolo and Breinlich (2010): exporters are larger, more productive

- Melitz (2003) setup; partial equilibrium

- Consider a single local labor market as a small, open economy

- Intermediate services are transformed into differentiated final services (associated with individual firms)
Model

- Stylized facts with respect to services very similar to goods
 - Criscuolo and Breinlich (2010): exporters are larger, more productive
- Melitz (2003) setup; partial equilibrium
- Consider a single local labor market as a small, open economy
- Intermediate services are transformed into differentiated final services (associated with individual firms)
- and delivered to foreign customers located in countries \(x = 1, \ldots, X \)
For a firm with efficiency \(\varphi > 0 \) the total cost of delivering (exporting) its service to country \(x \) is
For a firm with efficiency $\varphi > 0$ the total cost of delivering (exporting) its service to country x is

$$C_x = p_{f,x} f_x + p_{f,x} t_x \frac{q_x}{\varphi} + p \frac{q_x}{\varphi}$$

where q_x is output exported to x
For a firm with efficiency $\varphi > 0$ the total cost of delivering (exporting) its service to country x is

$$C_x = p_{f,x}f_x + p_{f,x}t_x \frac{q_x}{\varphi} + p \frac{q_x}{\varphi}$$

where q_x is output exported to x

$p_{f,x}f_x$ is a **fixed export cost** incurred in terms of a bundle of x-specific intermediate services with price index $p_{f,x}$
For a firm with efficiency $\varphi > 0$ the total cost of delivering (exporting) its service to country x is

$$C_x = p_{f,x} f_x + p_{f,x} t_x \frac{q_x}{\varphi} + p \frac{q_x}{\varphi}$$

where q_x is output exported to x

- $p_{f,x} f_x$ is a **fixed export cost** incurred in terms of a bundle of x-specific intermediate services with price index $p_{f,x}$

- $p_{f,x} t_x$ is a **marginal export cost** also incurred in terms of the same bundle
For a firm with efficiency $\varphi > 0$ the total cost of delivering (exporting) its service to country x is

$$C_x = p_{f,x} f_x + p_{f,x} t_x \frac{q_x}{\varphi} + p \frac{q_x}{\varphi}$$

where q_x is output exported to x

- $p_{f,x} f_x$ is a **fixed export cost** incurred in terms of a bundle of x-specific intermediate services with price index $p_{f,x}$

- $p_{f,x} t_x$ is a **marginal export cost** also incurred in terms of the same bundle

- p / φ is the **marginal production cost** incurred in terms of a bundle of services not specific to x with price index p
Model

\[C_x = p_{f,x}f_x + p_{f,x}t_x \frac{q_x}{\varphi} + p \frac{q_x}{\varphi} \]

- The export cost parameters \(f_x \) and \(t_x \):

Are increasing in the cultural distance between the local labor market and destination.

Are increasing in the cultural content of the service.

We think of cultural distance in terms of linguistic and institutional differences and of cultural content in terms of linguistic and institutional intensity.
\[C_x = p_{f,x} f_x + p_{f,t} t_x \frac{q_x}{\varphi} + p \frac{q_x}{\varphi} \]

- The export cost parameters \(f_x \) and \(t_x \):
 - Are increasing in the cultural distance between the local labor market and destination \(x \).
$$C_x = p_{f,x}f_x + p_{f,x}t_x \frac{q_x}{\varphi} + p \frac{q_x}{\varphi}$$

- The export cost parameters f_x and t_x:
 - Are increasing in the cultural distance between the local labor market and destination x
 - Are increasing in the cultural content of the service
Model

\[C_x = p_{f,x}f_x + p_{t,x}t_x \frac{q_x}{\varphi} + p \frac{q_x}{\varphi} \]

- The export cost parameters \(f_x \) and \(t_x \):
 - Are increasing in the cultural distance between the local labor market and destination \(x \)
 - Are increasing in the cultural content of the service

- We think of cultural distance in terms of linguistic and institutional differences
The export cost parameters f_x and t_x:

- Are increasing in the cultural distance between the local labor market and destination x
- Are increasing in the cultural content of the service

We think of cultural distance in terms of linguistic and institutional differences

and of cultural content in terms of linguistic and institutional intensity
x-specific intermediate services can be provided by immigrants from x or can be imported from x
- x-specific intermediate services can be provided by immigrants from x or can be imported from x
- but natives provide imperfectly substitutable services as well
- x-specific intermediate services can be provided by immigrants from x or can be imported from x
- but natives provide imperfectly substitutable services as well
- Let $p_{m,x}$ and $p_{o,x}$ denote the prices of x-specific intermediate services sourced from immigrants or offshore workers

\[
p_m = \left(p_n \right)^{1-\sigma} + X \sum_{x=1} \left(p_f, x \right)^{1-\sigma}
\]

\[
p_f, x = \left(p_m, x \right)^{1-\theta} + \left(p_o, x \right)^{1-\theta}
\]
Model

- x-specific intermediate services can be provided by **immigrants** from x or can be **imported** from x
- but natives provide imperfectly substitutable services as well
- Let $p_{m,x}$ and $p_{o,x}$ denote the prices of x-specific intermediate services sourced from immigrants or offshore workers

\[p = \left[(p_n)^{1-\sigma} + \sum_{x=1}^{X} (p_{f,x})^{1-\sigma} \right]^{\frac{1}{1-\sigma}} \]
- x-specific intermediate services can be provided by **immigrants** from x or can be **imported** from x
- but natives provide imperfectly substitutable services as well
- Let $p_{m,x}$ and $p_{o,x}$ denote the prices of x-specific intermediate services sourced from immigrants or offshore workers

$$p = \left[(p_n)^{1-\sigma} + \sum_{x=1}^{X} (p_{f,x})^{1-\sigma} \right]^{\frac{1}{1-\sigma}}$$

- and
x-specific intermediate services can be provided by immigrants from x or can be imported from x but natives provide imperfectly substitutable services as well
Let $p_{m,x}$ and $p_{o,x}$ denote the prices of x-specific intermediate services sourced from immigrants or offshore workers

\[
p = \left[(p_n)^{1-\sigma} + \sum_{x=1}^{X} (p_{f,x})^{1-\sigma} \right]^{\frac{1}{1-\sigma}}
\]

and

\[
p_{f,x} = \left[(p_{m,x})^{1-\theta} + (p_{o,x})^{1-\theta} \right]^{\frac{1}{1-\theta}}
\]

where $\theta > \sigma$
The usual (destination-specific) profit maximization leads to
The usual (destination-specific) profit maximization leads to

\[\Pi_x(\varphi) = \frac{R_x(\varphi)}{\delta} - p_{f,x}f_x \]
The usual (destination-specific) profit maximization leads to
\[\Pi_x(\varphi) = \frac{R_x(\varphi)}{\delta} - p_{f,x}f_x \]
which defines the cutoff productivity associated with exports to \(x \).
The usual (destination-specific) profit maximization leads to

\[\Pi_x(\varphi) = \frac{R_x(\varphi)}{\delta} - p_{f,x}f_x \]

which defines the cutoff productivity associated with exports to \(x \)

\[\varphi_x = \left(\frac{\delta}{\delta - 1} \frac{p + p_{f,x}t_x}{\bar{P}_x} \right) \left(\frac{p_{f,x}f_x\delta}{E_x} \right)^{\frac{1}{\delta - 1}} \]
The usual (destination-specific) profit maximization leads to

\[\Pi_x(\varphi) = \frac{R_x(\varphi)}{\delta} - p_{f,x}f_x \]

which defines the cutoff productivity associated with exports to \(x \)

\[\varphi_x = \left(\frac{\delta}{\delta - 1} \frac{p + p_{f,x}t_x}{\bar{P}_x} \right) \left(\frac{p_{f,x}f_x\delta}{E_x} \right)^{1/\delta - 1} \]

where \(\delta > 1 \) is the top-tier elasticity across final services
Model: Immigration

- Immigration Shocks

\[p_m, x \equiv p_m, x (\mu_x) \]

where \(\mu_x \) is an \(x \)-specific immigration cost (premium over reservation wage) and

\[p'_m, x (\mu_x) > 0 \]

and

\[\varepsilon_{p_m, x, \mu_x} = \frac{\mu_x p'_m, x (\mu_x)}{p_m, x (\mu_x)} > 0 \]

defines this elasticity.

A reduction in \(\mu_x \) reflects a positive \(x \)-specific immigration shock in the local labor market.
Model: Immigration

- Immigration Shocks
- Let $p_{m,x} \equiv p_{m,x}(\mu_x)$
Model: Immigration

- Immigration Shocks
- Let $p_{m,x} \equiv p_{m,x}(\mu_x)$
 - where μ_x is an x-specific immigration cost (premium over reservation wage)
Model: Immigration

- Immigration Shocks
- Let \(p_{m,x} \equiv p_{m,x}(\mu_x) \)
 - where \(\mu_x \) is an \(x \)-specific immigration cost (premium over reservation wage)
 - and \(p'_{m,x}(\mu_x) > 0 \)
Model: Immigration

- Immigration Shocks

- Let $p_{m,x} \equiv p_{m,x}(\mu_x)$
 - where μ_x is an x-specific immigration cost (premium over reservation wage)
 - and $p'_{m,x}(\mu_x) > 0$
 - and $\varepsilon_{p_{m,x},\mu_x} = \mu_x p'_{m,x}(\mu_x) / p_{m,x}(\mu_x) > 0$ defines this elasticity
Model: Immigration

- Immigration Shocks
- Let $p_{m,x} \equiv p_{m,x}(\mu_x)$
 - where μ_x is an x-specific immigration cost (premium over reservation wage)
 - and $p'_{m,x}(\mu_x) > 0$
 - and $\varepsilon_{p_{m,x},\mu_x} = \mu_x p'_{m,x}(\mu_x) / p_{m,x}(\mu_x) > 0$ defines this elasticity
- A reduction in μ_x reflects a positive x-specific immigration shock in the local labor market
Model: Comparative Statics

- General Productivity Effect
Model: Comparative Statics

- General Productivity Effect

- Let \(s_{m,x} \in (0, 1) \) define the cost share of intermediate services supplied by immigrants from \(x \)
General Productivity Effect

Let $s_{m,x} \in (0, 1)$ define the cost share of intermediate services supplied by immigrants from x

and $\tau_y \equiv p / \left(p + p_{f,y} t_y \right) \in (0, 1)$ define the “tradability” of final services with respect to shipments to country $y \neq x$
Model: Comparative Statics

- General Productivity Effect

- Let \(s_{m,x} \in (0, 1) \) define the cost share of intermediate services supplied by immigrants from \(x \)

- and \(\tau_y \equiv p / \left(p + p_{f,y} t_y \right) \in (0, 1) \) define the “tradability” of final services with respect to shipments to country \(y \neq x \)

\[
\frac{d \ln \varphi_y}{d \ln \mu_x} = \frac{p}{p + p_{f,y} t_y} \frac{d \ln p}{d \ln \mu_x} = \tau_y s_{m,x} \varepsilon_{p_{m,x}, \mu_x} > 0
\]
Model: Comparative Statics

▶ General Productivity Effect

▶ Let $s_{m,x} \in (0,1)$ define the cost share of intermediate services supplied by immigrants from x

▶ and $\tau_y \equiv p / \left(p + p_{f,y}t_y \right) \in (0,1)$ define the "tradability" of final services with respect to shipments to country $y \neq x$

\[
\frac{d \ln \varphi_y}{d \ln \mu_x} = \frac{p}{p + p_{f,y}t_y} \frac{d \ln p}{d \ln \mu_x} = \tau_y s_{m,x} \varepsilon_{p_{m,x},\mu_x} > 0
\]

▶ The fraction of firms exporting to any country (including x) is increasing in the share of immigrant services in costs
Model: Comparative Statics

- **General Productivity Effect**

- Let $s_{m,x} \in (0, 1)$ define the cost share of intermediate services supplied by immigrants from x

- and $\tau_y \equiv p / \left(p + p_{f,y} t_y \right) \in (0, 1)$ define the “tradability” of final services with respect to shipments to country $y \neq x$

\[
\frac{d \ln \varphi_y}{d \ln \mu_x} = \frac{p}{p + p_{f,y} t_y} \frac{d \ln p}{d \ln \mu_x} = \tau_y s_{m,x} \varepsilon_{p_{m,x}, \mu_x} > 0
\]

- The fraction of firms exporting to any country (including x) is increasing in the share of immigrant services in costs

- Note that τ_y is decreasing in

\section*{Model: Comparative Statics}

\begin{itemize}
 \item \textit{General Productivity Effect}
 \item Let $s_{m,x} \in (0,1)$ define the cost share of intermediate services supplied by immigrants from x
 \item and $\tau_y \equiv p / \left(p + p_{f,y} t_y \right) \in (0,1)$ define the “tradability” of final services with respect to shipments to country $y \neq x$
 \item The fraction of firms exporting to any country (including x) is increasing in the share of immigrant services in costs
 \item Note that τ_y is decreasing in
 \begin{itemize}
 \item the cultural content of the service ($p_{f,y}/p$)
 \end{itemize}
\end{itemize}
Model: Comparative Statics

- **General Productivity Effect**

- Let \(s_{m,x} \in (0, 1) \) define the cost share of intermediate services supplied by immigrants from \(x \)

- and \(\tau_y \equiv p / \left(p + p_{f,y}t_y \right) \in (0, 1) \) define the "tradability" of final services with respect to shipments to country \(y \neq x \)

\[
\frac{d \ln \varphi_y}{d \ln \mu_x} = \frac{p}{p + p_{f,y}t_y} \frac{d \ln p}{d \ln \mu_x} = \tau_y s_{m,x} \epsilon_{p_m,x,\mu_x} > 0
\]

- The fraction of firms exporting to any country (including \(x \)) is increasing in the share of immigrant services in costs

- Note that \(\tau_y \) is decreasing in
 - the cultural content of the service \((p_{f,y}/p) \)
 - the cultural distance between \(y \) and the local labor market \((t_y) \)
Similarly, on the intensive margin
\[d \ln R_y(\phi) d \ln \mu_x = - (\delta - 1) \tau y_s m_x \epsilon_p m_x, \mu_x < 0. \]

Sales to all countries are increasing in the share of immigrant services in production costs.

Note that general equilibrium is a Rybczynski Effect.
General Productivity Effect Continued

Similarly, on the intensive margin

\[
\frac{d \ln R_y(\varphi)}{d \ln \mu_x} = - (\delta - 1) \tau y s_{m,x} \varepsilon_{p_{m,x},\mu_x} < 0
\]
General Productivity Effect Continued

Similarly, on the intensive margin

\[\frac{d \ln R_y(\varphi)}{d \ln \mu_x} = - (\delta - 1) \tau_y s_{m,x} \varepsilon_{p_{m,x},\mu_x} < 0 \]

Sales to all countries are increasing in the share of immigrant services in production costs.
General Productivity Effect Continued

Similarly, on the intensive margin

\[
\frac{d \ln R_y(\varphi)}{d \ln \mu_x} = - (\delta - 1) \tau_y s_{m,x} \varepsilon_{p_{m,x},\mu_x} < 0
\]

Sales to all countries are increasing in the share of immigrant services in production costs.

Note that general equilibrium is a Rybczynski Effect
Model: Comparative Statics

- Bilateral Effect

There is an additional term specific to x on both margins

$$d \ln \phi_x = \left[\tau_x s, \mu_x \right] + (1 - \tau_x) \delta - 1 s, \mu_x > 0$$

and

$$d \ln R_x(\phi) = -(\delta - 1) \left[\tau_x s, \mu_x \right] + (1 - \tau_x) s, \mu_x < 0$$

where s, μ_x is the share of immigrant services from x in the cost of foreign services.

The relative importance of the General vs Bilateral Effect is decreasing in cultural distance and content.
Bilateral Effect

There is an additional term specific to \(x \) on both margins

\[
\frac{d \ln \varphi_x}{d \ln \mu_x} = \left[\tau_x s_{m,x} + (1 - \tau_x) \frac{\delta}{\delta - 1} s_{f,m,x} \right] \varepsilon_{p,m,x,\mu_x} > 0
\]
Model: Comparative Statics

- **Bilateral Effect**

- There is an additional term specific to x on both margins

\[
\frac{d \ln \varphi_x}{d \ln \mu_x} = \left[\tau_x s_{m,x} + (1 - \tau_x) \frac{\delta}{\delta - 1} s_{f,m,x} \right] \varepsilon_{p_{m,x},\mu_x} \geq 0
\]

- and
Model: Comparative Statics

- **Bilateral Effect**

- There is an additional term specific to x on both margins

\[
\frac{d \ln \varphi_x}{d \ln \mu_x} = \left[\tau_x s_{m,x} + (1 - \tau_x) \frac{\delta}{\delta - 1} s_{f,x}^1 \right] \varepsilon_{p_m,x,\mu_x} > 0
\]

- and

\[
\frac{d \ln R_x(\varphi)}{d \ln \mu_x} = - (\delta - 1) \left[\tau_x s_{m,x} + (1 - \tau_x) s_{f,x}^1 \right] \varepsilon_{p_m,x,\mu_x} < 0
\]

- where $s_{f,m,x}^1$ is the share of immigrant services from x in the cost of foreign services
Model: Comparative Statics

- **Bilateral Effect**

- There is an additional term specific to x on both margins

\[
\frac{d \ln \varphi_x}{d \ln \mu_x} = \left[\tau_x s_{m,x} + (1 - \tau_x) \frac{\delta}{\delta - 1} s^f_{m,x} \right] \varepsilon_{p,m,x,\mu_x} > 0
\]

- and

\[
\frac{d \ln R_x(\varphi)}{d \ln \mu_x} = - (\delta - 1) \left[\tau_x s_{m,x} + (1 - \tau_x) s^f_{m,x} \right] \varepsilon_{p,m,x,\mu_x} < 0
\]

- where $s^f_{m,x}$ is the share of immigrant services from x in the cost of foreign services

- The relative importance of the General vs Bilateral Effect is decreasing in cultural distance and content
Model: Comparative Statics

- **Import Substitution Effect**
Model: Comparative Statics

- Import Substitution Effect
- Variation in μ_x affects the margin between immigrants and imports
Import Substitution Effect

Variation in μ_x affects the margin between immigrants and imports

The share of foreign services offshored is $s_{o,x}^f = 1 - s_{m,x}^f = \left(\frac{p_{f,x}}{p_{o,x}} \right)^{\theta - 1}$
Model: Comparative Statics

- **Import Substitution Effect**
 - Variation in μ_x affects the margin between immigrants and imports
 - The share of foreign services offshored is $s_{o,x}^f = 1 - s_{m,x}^f = \left(\frac{p_{f,x}}{p_{o,x}}\right)^{\theta-1}$
 - Differentiating (and noting $\theta > 1$, $\sigma > 1$):
 \[
 \frac{d \ln s_{o,x}^f}{d \ln \mu_x} = (\theta - 1) s_{m,x}^f \varepsilon_{p_{m,x},\mu_x} > 0
 \]
Model: Comparative Statics

- **Import Substitution Effect**

- Variation in μ_x affects the margin between immigrants and imports

- The share of foreign services offshored is $s_{o,x}^f = 1 - s_{m,x}^f = \left(\frac{p_{f,x}}{p_{o,x}} \right)^{\theta - 1}$

- Differentiating (and noting $\theta > 1$, $\sigma > 1$):

$$\frac{d \ln s_{o,x}^f}{d \ln \mu_x} = (\theta - 1) s_{m,x}^f \varepsilon_{p_{m,x}, \mu_x} > 0$$

- and
Model: Comparative Statics

- **Import Substitution Effect**

- Variation in μ_x affects the margin between immigrants and imports

- The share of foreign services offshored is $s_{o,x}^f = 1 - s_{m,x}^f = \left(\frac{p_{f,x}}{p_{o,x}}\right)^{\theta-1}$

- Differentiating (and noting $\theta > 1$, $\sigma > 1$):

 $$\frac{d \ln s_{o,x}^f}{d \ln \mu_x} = (\theta - 1) s_{m,x}^f \epsilon_{p_{m,x},\mu_x} > 0$$

- and

 $$\frac{d \ln s_{f,x}^f}{d \ln \mu_x} = - (\sigma - 1) \left(1 - s_{f,x}^f\right) s_{m,x}^f \epsilon_{p_{m,x},\mu_x} < 0$$

- Immigration from x reduces offshoring, and disproportionately offshoring to x
Model Summary

- Prop. 1 (“Productivity effect”): Larger employment share of immigrants promotes firm productivity and exports.
- Prop. 2 (“Bilateral export promotion effect”): Larger employment share of immigrants from a country promotes exports to that country.
- Prop. 3 (“Bilateral import substitution effect”): Larger employment share of immigrants from a country reduces firm imports from that country (and other countries).
Prop. 1 ("Productivity effect"): Larger employment share of immigrants promotes firm productivity and exports
Model Summary

- Prop. 1 ("Productivity effect"): Larger employment share of immigrants promotes firm productivity and exports

- Prop. 2 ("Bilateral export promotion effect"): Larger employment share of immigrants from a country promotes exports to that country
Prop. 1 ("Productivity effect"): Larger employment share of immigrants promotes firm productivity and exports

Prop. 2 ("Bilateral export promotion effect"): Larger employment share of immigrants from a country promotes exports to that country

Prop. 3 ("Bilateral import substitution effect"): Larger employment share of immigrants from a country reduces firm imports from that country (and other countries)
Moreover:

The primary margin of substitution is between immigrants and offshore workers. The immigrant share should not affect native employment that much. The Bilateral Export Promotion Effect of immigrants should be greater for services that have a strong country-specific component (e.g., cultural, linguistic, institutional). These effects should be stronger when there is a larger linguistic, cultural or institutional difference between countries.
Moreover:

- The primary margin of substitution is between immigrants and offshore workers
Moreover:

- The primary margin of substitution is between immigrants and offshore workers
 - The immigrant share should not affect native employment that much
Moreover:

- The primary margin of substitution is between immigrants and offshore workers
 - The immigrant share should not affect native employment that much
- The Bilateral Export Promotion Effect of immigrants should be greater for services that have a strong country-specific component (e.g., cultural, linguistic, institutional)
Moreover:

- The primary margin of substitution is between immigrants and offshore workers
 - The immigrant share should not affect native employment that much
- The Bilateral Export Promotion Effect of immigrants should be greater for services that have a strong country-specific component (e.g., cultural, linguistic, institutional)
- These effects should be stronger when there is a larger linguistic, cultural or institutional difference between countries
Data

- Three UK datasets: ARD (firm survey, universe of large firms, agg. services trade), ITIS (services trade survey), QLFS (worker survey)
Data

- Three UK datasets: ARD (firm survey, universe of large firms, agg. services trade), ITIS (services trade survey), QLFS (worker survey)
 - No Financial Services in ITIS

There are 29,160 TTWA-Sector-Country cells. 24% are zeros.
Data

- Three UK datasets: ARD (firm survey, universe of large firms, agg. services trade), ITIS (services trade survey), QLFS (worker survey)
 - No Financial Services in ITIS
- Match ARD-ITIS by firm identifier (74% match by number, 99% by value)

24% are zeros

Services Trade Barriers by country and service type (OECD STRI)

Diversity Index:

\[
\text{ImmDiv}_{kt} = 1 - \sum_{n=1}^{N} \left(\text{ImmSh}_{nk} \right)^2
\]
Three UK datasets: ARD (firm survey, universe of large firms, agg. services trade), ITIS (services trade survey), QLFS (worker survey)
 - No Financial Services in ITIS
 - Match ARD-ITIS by firm identifier (74% match by number, 99% by value)
 - Match to QLFS by TTWA and 1-digit Sector, 1999-2005

Maximum variation we exploit: workers from top 20 origin countries located across 243 TTWAs, working within 6 one-digit industries and trading 3 aggregate service types over 7 years

There are 29,160 TTWA-Sector-Country cells.

24% are zeros

Services Trade Barriers by country and service type (OECD STRI)

Diversity Index: $\text{ImmDiv}_{kt} = 1 - \sum_{n=1}^{N} \left(\text{ImmSh}_{nt} \right)^2$
Three UK datasets: ARD (firm survey, universe of large firms, agg. services trade), ITIS (services trade survey), QLFS (worker survey)
 - No Financial Services in ITIS

Match ARD-ITIS by firm identifier (74% match by number, 99% by value)

Match to QLFS by TTWA and 1-digit Sector, 1999-2005

Maximum variation we exploit: workers from top 20 origin countries located across 243 TTWAs, working within 6 one-digit industries and trading 3 aggregate service types over 7 years
Data

- Three UK datasets: ARD (firm survey, universe of large firms, agg. services trade), ITIS (services trade survey), QLFS (worker survey)
 - No Financial Services in ITIS
- Match ARD-ITIS by firm identifier (74% match by number, 99% by value)
- Match to QLFS by TTWA and 1-digit Sector, 1999-2005
- Maximum variation we exploit: workers from top 20 origin countries located across 243 TTWAs, working within 6 one-digit industries and trading 3 aggregate service types over 7 years
- There are 29,160 TTWA-Sector-Country cells.
Data

- Three UK datasets: ARD (firm survey, universe of large firms, agg. services trade), ITIS (services trade survey), QLFS (worker survey)
 - No Financial Services in ITIS
- Match ARD-ITIS by firm identifier (74% match by number, 99% by value)
- Match to QLFS by TTWA and 1-digit Sector, 1999-2005
- Maximum variation we exploit: workers from top 20 origin countries located across 243 TTWAs, working within 6 one-digit industries and trading 3 aggregate service types over 7 years
- There are 29,160 TTWA-Sector-Country cells.
 - 24% are zeros
Data

- Three UK datasets: ARD (firm survey, universe of large firms, agg. services trade), ITIS (services trade survey), QLFS (worker survey)
 - No Financial Services in ITIS
- Match ARD-ITIS by firm identifier (74% match by number, 99% by value)
- Match to QLFS by TTWA and 1-digit Sector, 1999-2005
- Maximum variation we exploit: workers from top 20 origin countries located across 243 TTWAs, working within 6 one-digit industries and trading 3 aggregate service types over 7 years
- There are 29,160 TTWA-Sector-Country cells.
 - 24% are zeros
- Services Trade Barriers by country and service type (OECD STRI)
Data

- Three UK datasets: ARD (firm survey, universe of large firms, agg. services trade), ITIS (services trade survey), QLFS (worker survey)
 - No Financial Services in ITIS
- Match ARD-ITIS by firm identifier (74% match by number, 99% by value)
- Match to QLFS by TTWA and 1-digit Sector, 1999-2005
- Maximum variation we exploit: workers from top 20 origin countries located across 243 TTWAs, working within 6 one-digit industries and trading 3 aggregate service types over 7 years
- There are 29,160 TTWA-Sector-Country cells.
 - 24% are zeros
- Services Trade Barriers by country and service type (OECD STRI)
- Diversity Index: $ImmDiv_{kt} = 1 - \sum_{n=1}^{N} (ImmSh_{kt}^n)^2$
Top Export Destinations
As Share of Total Exports

- UNITED STATES OF AMERICA
- GERMANY
- NETHERLANDS
- IRELAND
- SWITZ.
- FRANCE
- JAPAN
- BELG.
- OTH.
- SAUDI A.
Top Import Source Countries

As Share of Total Imports

- UNITED STATES OF AMERICA
- GERMANY
- FRANCE
- NETHERLANDS
- SWITZ.
- IRELAND
- JAPAN
- BELG.
- ITALY
- OTH.
Figure 1. Share of foreign-born workers; top (travel-to-work) Areas
Figure 2. U.K. Services Exports and Imports by Service Type, 1999-2005

Thousands of UK Pounds
Main Specification

\[
\ln(y)_{iskt} = \phi_i + \theta_t + \zeta_{jt} + \zeta_{at} + \gamma_t^n + \beta_1 ImmShr_{kt} + \beta_2 ImmDiv_{kt} \\
+ \beta_3 ImmShr^n_{kt} + \tau_s^n + \beta_x \ln X_{ikt} + \epsilon^n_{iskt}
\]

- Unit of obs: service type \(s\) associated with firm \(i\) in TTWA (a)-Sector (j) cell \(k\) in year \(t\)
- \(y^n_{iskt}\) is imports from or exports to country \(n\)
- \(ImmShr_{kt}\) is the share of immigrants in cell \(k\) (minus country \(n\))
- \(ImmDiv_{kt}\) is country-of-birth immigrant diversity (minus country \(n\))
- \(ImmShr^n_{kt}\) is employment share of immigrants from country \(n\)
- \(X_{ikt}\) is a set of firm-level control variables; \(\phi_i\) and \(\theta_t\) are firm and year fixed effects
- \(\zeta_{jt}\) and \(\zeta_{at}\) are sector-by-year and TTWA-by-year fixed effects
- \(\gamma_t^n\) is a destination-year fixed effect
- \(\tau_s^n\) are service-type specific trade barriers
- \(H_0: \beta_1 > 0\) and \(\beta_2 > 0\) (Productivity Effect - Prop. 1); \(\beta_3 < 0\) (Substitution Effect - Prop. 2) or \(\beta_3 > 0\) (Export Promotion Effect - Prop. 3)
Results are robust to PPML specification.
Results are robust to PPML specification.
Why PPML?
Results are robust to PPML specification.

Why PPML?

When errors are heteroskedastic taking logs introduces a bias due to Jensen’s Inequality
Results are robust to PPML specification.

Why PPML?

When errors are heteroskedastic taking logs introduces a bias due to Jensen’s Inequality

The expected value of the log error is mechanically correlated with the regressors
- Results are robust to PPML specification.
- Why PPML?
- When errors are heteroskedastic taking logs introduces a bias due to Jensen’s Inequality
- The expected value of the log error is mechanically correlated with the regressors
- Also: zeros (less of an issue)
We exploit an enclave-based IV strategy (Altonji and Card (1991), Card (2001))
Identification

- We exploit an enclave-based IV strategy (Altonji and Card (1991), Card (2001))
- Start with 1997 share of immigrants by country across cells (TTWA-Sector)
We exploit an enclave-based IV strategy (Altonji and Card (1991), Card (2001))

Start with 1997 share of immigrants by country across cells (TTWA-Sector)

Allocate future aggregate growth of immigrants by country (relative to UK population growth) to cells according to this distribution
Identification

- We exploit an enclave-based IV strategy (Altonji and Card (1991), Card (2001))
- Start with 1997 share of immigrants by country across cells (TTWA-Sector)
- Allocate future aggregate growth of immigrants by country (relative to UK population growth) to cells according to this distribution
- Construct IV for diversity index using these values
Table 2. Immigrants and the Productivity of UK Firms

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable:</td>
<td>Log of Gross Value Added per Worker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immigrant Share Aggregate</td>
<td>1.4**</td>
<td>1.2**</td>
<td>1.1*</td>
<td>1.1**</td>
<td>0.7**</td>
<td>1.8*</td>
</tr>
<tr>
<td></td>
<td>(0.6)</td>
<td>(0.5)</td>
<td>(0.5)</td>
<td>(0.4)</td>
<td>(0.3)</td>
<td>(1.0)</td>
</tr>
<tr>
<td>Immigrant Diversity Index</td>
<td>1.3**</td>
<td>1.4*</td>
<td>1.7**</td>
<td>1.1</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>(0.6)</td>
<td>(0.8)</td>
<td>(0.8)</td>
<td>(0.7)</td>
<td>(1.0)</td>
<td>(0.9)</td>
</tr>
<tr>
<td>Firm and Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>TTWA-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sec-Year and TTWA-Year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>6930</td>
<td>6930</td>
<td>6930</td>
<td>6930</td>
<td>6930</td>
<td>6930</td>
</tr>
<tr>
<td>F-Statistic of first stage</td>
<td>33</td>
<td>21</td>
<td>12</td>
<td>33</td>
<td>21</td>
<td>12</td>
</tr>
</tbody>
</table>

*Note: The dependent variable is the logarithm of gross value added per worker in the firm. Each regression contains firm fixed effects and the following controls: log capital investment, the log wage bill, and the log of computer software investments. Number of observations is based on the right hand side number of cells. Specification (1), (2), and (3) differ from each other because of the inclusion of different sets of fixed effects included as described in the Table. The 2SLS regressions use, as in instrument, the imputed number of foreign born in the sector TTWA (Travel to Work) cells constructed as described in the text. The period considered is 1999 to 2005. Standard errors are clustered at the sector MTWTA level. ***, **, * denote significance at the 1%, 5%, 10% confidence level.
Table 7. Immigrants and the Services Exports (Total and Bilateral) of UK firms

<table>
<thead>
<tr>
<th>Dep. Variable: Log of Export Value</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immigrant Share Aggregate</td>
<td>2.2***</td>
<td>2.1**</td>
<td>2.5***</td>
<td>1.7***</td>
<td>3.6**</td>
<td>1.5***</td>
</tr>
<tr>
<td></td>
<td>(0.4)</td>
<td>(0.8)</td>
<td>(0.8)</td>
<td>(0.2)</td>
<td>(1.8)</td>
<td>(0.2)</td>
</tr>
<tr>
<td>Immigrant Share Bilateral</td>
<td>8.1*</td>
<td>10.1**</td>
<td>10.4**</td>
<td>6.2</td>
<td>8.9*</td>
<td>9.3*</td>
</tr>
<tr>
<td></td>
<td>(5.5)</td>
<td>(5.2)</td>
<td>(5.0)</td>
<td>(8.0)</td>
<td>(5.9)</td>
<td>(6.2)</td>
</tr>
<tr>
<td>Immigrant Diversity</td>
<td>-0.0</td>
<td>-0.0</td>
<td>0.0</td>
<td>-1.0*</td>
<td>-0.7*</td>
<td>-1.1*</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(0.1)</td>
<td>(0.0)</td>
<td>(0.5)</td>
<td>(0.4)</td>
<td>(0.6)</td>
</tr>
<tr>
<td>Service Barrier Index</td>
<td>-0.3*</td>
<td>-0.6*</td>
<td>-0.4*</td>
<td>-0.5*</td>
<td>-0.3</td>
<td>-0.5*</td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td>(0.3)</td>
<td>(0.2)</td>
<td>(0.3)</td>
<td>(0.3)</td>
<td>(0.3)</td>
</tr>
<tr>
<td>Firm and Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sec-Year and TTWA-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sec-, TTWA-, Dest-Year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
</tr>
<tr>
<td>TTWA-Sec F-Stat (Agg, Bilat)</td>
<td>33, 49</td>
<td>21, 40</td>
<td>12, 23</td>
<td>33, 49</td>
<td>21, 40</td>
<td>12, 23</td>
</tr>
</tbody>
</table>

Note: The dependent variable is the logarithm of the value of exports from the firm to a country. The unit of analysis is the firm-country couple. Each regression contains firm fixed effects and the following controls: log capital investment, the log wage bill, and the log of computer software investments.

Number of observations is number of TTWA-Sector-Year-Destination cells. Specifications (1), (2), and (3) differ from each other because of the inclusion of different sets of fixed effects as described in the Table above. The 2SLS regressions use as instrument the imputed number of foreign-born in the sector-TTWA cells, constructed as described in the text. The period considered is 1999-2005. Standard errors are clustered at the sector-TTWA level. ***,**,* denote significance at the 1%, 5%, 10% confidence level.
Comparing our 2SLS estimates with existing immigrant-goods export elasticities
Comparing our 2SLS estimates with existing immigrant-goods export elasticities

Our estimates imply that a 10% rise in immigration leads to a 3 to 5% increase in services exports to a destination
Economic Magnitude

- Comparing our 2SLS estimates with existing immigrant-goods export elasticities
- Our estimates imply that a 10% rise in immigration leads to a 3 to 5% increase in services exports to a destination
- Genc, et al. (2011) meta-analysis reports estimates for goods between 0.6 and 6.5%
Comparing our 2SLS estimates with existing immigrant-goods export elasticities

Our estimates imply that a 10% rise in immigration leads to a 3 to 5% increase in services exports to a destination

Genc, et al. (2011) meta-analysis reports estimates for goods between 0.6 and 6.5%
 - Mean: 1.5%
Table 8. Immigrants and the Extensive Margin of Exports

<table>
<thead>
<tr>
<th>Dependent Variable: Export Status Indicator (0,1)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immigrant Share Aggregate</td>
<td>0.12***</td>
<td>0.14*</td>
<td>0.11**</td>
<td>0.10**</td>
<td>0.10*</td>
<td>0.11*</td>
</tr>
<tr>
<td></td>
<td>(0.03)</td>
<td>(0.07)</td>
<td>(0.04)</td>
<td>(0.03)</td>
<td>(0.05)</td>
<td>(0.05)</td>
</tr>
<tr>
<td>Immigrant Share Bilateral</td>
<td>0.32</td>
<td>0.04</td>
<td>0.22*</td>
<td>0.27</td>
<td>0.03</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>(0.41)</td>
<td>(0.04)</td>
<td>(0.12)</td>
<td>(0.47)</td>
<td>(0.11)</td>
<td>(0.29)</td>
</tr>
<tr>
<td>Immigrant Diversity</td>
<td>0.02</td>
<td>0.14**</td>
<td>0.03</td>
<td>0.14</td>
<td>0.12*</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.05)</td>
<td>(0.03)</td>
<td>(0.17)</td>
<td>(0.06)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>Service Barrier Index</td>
<td>-0.22**</td>
<td>-0.18*</td>
<td>-0.33**</td>
<td>-0.21*</td>
<td>-0.14</td>
<td>-0.27*</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.15)</td>
<td>(0.11)</td>
<td>(0.13)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>Firm and Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sec-Year and TTWA-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sec-, TTWA-, Dest-Year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
</tr>
<tr>
<td>TTWA-Sec F-Stat (Agg, Bilat)</td>
<td>33,49</td>
<td>21,40</td>
<td>12,23</td>
<td>33,49</td>
<td>21,40</td>
<td>12,23</td>
</tr>
</tbody>
</table>

Note: The dependent variable is an indicator (0, 1) for the firm exporting to a country. The unit of analysis is the firm-country couple. Each regression contains firm fixed effects and the following controls: log capital investment, the log wage bill, and the log of computer software investments. Number of observations is number of TTWA sector-year cells. Specifications (1), (2), and (3) differ from each other because of the inclusion of different sets of fixed effects as described in the Table above. The 2SLS regressions use as instrument the imputed number of foreign-born in the sector TTWA cells, constructed as described in the text. The period considered is 1999-2005. Standard errors are clustered at the sector TTWA level. ***,**,* denote significance at the 1%, 5%, 10% confidence level.
Table 5. Immigrants and Imports of Services (Offshoring) by UK firms

<table>
<thead>
<tr>
<th>Dep. Variable: Log of Import Value</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>2SLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immigrant Share Aggregate</td>
<td>12.2*** (3.4)</td>
<td>11.3*** (3.8)</td>
<td>9.8*** (2.5)</td>
<td>9.7** (5.9)</td>
<td>7.4** (3.7)</td>
<td>7.3** (3.4)</td>
</tr>
<tr>
<td>Immigrant Share Bilateral</td>
<td>-5.1* (3.3)</td>
<td>-4.0** (2.7)</td>
<td>-4.8** (2.6)</td>
<td>-8.2** (4.4)</td>
<td>-4.9* (3.4)</td>
<td>-7.9** (4.4)</td>
</tr>
<tr>
<td>Immigrant Diversity</td>
<td>3.0** (1.6)</td>
<td>2.1* (1.3)</td>
<td>2.8** (1.4)</td>
<td>1.0* (0.5)</td>
<td>0.7* (0.4)</td>
<td>1.0* (0.5)</td>
</tr>
<tr>
<td>Service Barrier Index</td>
<td>-0.5*** (0.2)</td>
<td>-0.6** (0.3)</td>
<td>-0.6*** (0.2)</td>
<td>-0.5* (0.3)</td>
<td>-0.6* (0.4)</td>
<td>-0.6* (0.4)</td>
</tr>
<tr>
<td>Firm and Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sec-Year and TTWA-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sec-, TTWA-, Dest-Year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
</tr>
<tr>
<td>TTWA-Sec F-Stat (Agg, Bilat)</td>
<td>59,40</td>
<td>43,38</td>
<td>12,23</td>
<td>59,40</td>
<td>43,38</td>
<td>12,23</td>
</tr>
</tbody>
</table>

Note: The dependent variable is the logarithm of the value of the imports of traded services by the firm from the country. The unit of analysis is the firm-import-country couple. Each regression contains firm fixed effects and the following controls: log capital investment, the log wage bill, and the log of computer software investments. Number of observations is number of TTWA-sector-year cells. Specifications (1), (2) and (3) differ from each other because of the inclusion of different sets of fixed effects included as described in the Table above. The 2SLS regressions use as instrument the imputed number of foreign born in the sector TTWA cells, constructed as described in the text. The period considered is 1999-2005. Standard errors are clustered at the sector TTWA level. ***,**,* denote significance at the 1%, 5%, 10% confidence level.
Table 1: Tradable Service Sectors Divided by Category

<table>
<thead>
<tr>
<th>Technical-Financial</th>
<th>Legal & Related</th>
<th>Language-Human Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financial Services</td>
<td>Legal Services</td>
<td>Recruitment & Training</td>
</tr>
<tr>
<td>Insurance</td>
<td>Accounting & Auditing</td>
<td>Procurement</td>
</tr>
<tr>
<td>Architectural Engineering</td>
<td>Property Management</td>
<td>Management Consulting</td>
</tr>
<tr>
<td>Surveying</td>
<td></td>
<td>Public Relations</td>
</tr>
<tr>
<td>Agricultural Mining</td>
<td></td>
<td>Advertising</td>
</tr>
<tr>
<td>Other Technical</td>
<td></td>
<td>TV and Radio Services</td>
</tr>
<tr>
<td>Computer & Information Services</td>
<td></td>
<td>Cultural & Recreational Services</td>
</tr>
<tr>
<td>Research & Development</td>
<td></td>
<td>Publishing Services</td>
</tr>
<tr>
<td>Other Business Services</td>
<td></td>
<td>Health Services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Market Research & Polling</td>
</tr>
</tbody>
</table>
Table 6. Immigrants and Imports of Services (Offshoring), by Service Type

<table>
<thead>
<tr>
<th>Dep. Variable: Log of Import Value</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SLS: Financial & Technical Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immigrant Share Aggregate</td>
<td>0.3***</td>
<td>0.3**</td>
<td>0.3**</td>
<td>7.3***</td>
<td>8.2*</td>
<td>9.5***</td>
<td>11.2***</td>
<td>9.5***</td>
<td>10.8***</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(0.1)</td>
<td>(0.1)</td>
<td>(2.7)</td>
<td>(3.2)</td>
<td>(3.2)</td>
<td>(3.7)</td>
<td>(2.1)</td>
<td>(2.2)</td>
</tr>
<tr>
<td>Immigrant Share Bilateral</td>
<td>-1.0</td>
<td>-0.8</td>
<td>-1.9</td>
<td>-10.8*</td>
<td>-6.3**</td>
<td>-14.2**</td>
<td>-10.0**</td>
<td>-6.0*</td>
<td>-6.7**</td>
</tr>
<tr>
<td></td>
<td>(1.0)</td>
<td>(0.6)</td>
<td>(1.2)</td>
<td>(6.5)</td>
<td>(3.2)</td>
<td>(6.5)</td>
<td>(5.1)</td>
<td>(4.0)</td>
<td>(3.3)</td>
</tr>
<tr>
<td>Immigrant Diversity</td>
<td>5.6**</td>
<td>5.8**</td>
<td>6.1*</td>
<td>1.0**</td>
<td>1.0*</td>
<td>1.6*</td>
<td>3.3*</td>
<td>1.7**</td>
<td>2.1*</td>
</tr>
<tr>
<td></td>
<td>(2.9)</td>
<td>(3.1)</td>
<td>(3.9)</td>
<td>(0.4)</td>
<td>(0.6)</td>
<td>(0.8)</td>
<td>(1.7)</td>
<td>(0.7)</td>
<td>(1.0)</td>
</tr>
<tr>
<td>Service Barrier Index</td>
<td>-0.6**</td>
<td>-0.6**</td>
<td>-0.6**</td>
<td>-1.0*</td>
<td>-1.4*</td>
<td>-1.1*</td>
<td>-2.2***</td>
<td>-1.9***</td>
<td>-1.1**</td>
</tr>
<tr>
<td></td>
<td>(0.3)</td>
<td>(0.3)</td>
<td>(0.3)</td>
<td>(0.6)</td>
<td>(0.8)</td>
<td>(0.5)</td>
<td>(0.1)</td>
<td>(0.3)</td>
<td>(0.4)</td>
</tr>
<tr>
<td>Firm and Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sec-Year and TTWA-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sec-, TTWA-, Dest-Year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
</tr>
<tr>
<td>TTWA-Sec F-Stat (Agg. Bilat)</td>
<td>33, 49</td>
<td>21, 40</td>
<td>12, 23</td>
<td>33, 49</td>
<td>21, 40</td>
<td>12, 23</td>
<td>33, 49</td>
<td>21, 40</td>
<td>12, 23</td>
</tr>
</tbody>
</table>
Table 9. Effect of Immigrants on Exports by Type of Service

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Variable: Log of Export Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2SLS: Financial & Technical Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immigrant Share Aggregate</td>
<td>0.3***</td>
<td>0.2*</td>
<td>0.3***</td>
<td>2.9***</td>
<td>2.0*</td>
<td>2.0**</td>
<td>1.9***</td>
<td>3.0*</td>
<td>2.8***</td>
</tr>
<tr>
<td>(0.0)</td>
<td>(0.1)</td>
<td>(0.0)</td>
<td>(0.4)</td>
<td>(1.1)</td>
<td>(0.9)</td>
<td>(0.7)</td>
<td>(2.1)</td>
<td>(0.6)</td>
<td></td>
</tr>
<tr>
<td>Immigrant Share Bilateral</td>
<td>4.1*</td>
<td>2.6</td>
<td>3.1*</td>
<td>13.3*</td>
<td>8.1***</td>
<td>12.1**</td>
<td>4.2**</td>
<td>5.0</td>
<td>2.9*</td>
</tr>
<tr>
<td>(2.9)</td>
<td>(2.8)</td>
<td>(1.8)</td>
<td>(7.6)</td>
<td>(2.2)</td>
<td>(3.9)</td>
<td>(2.1)</td>
<td>(4.2)</td>
<td>(1.4)</td>
<td></td>
</tr>
<tr>
<td>Immigrant Diversity</td>
<td>-0.9</td>
<td>-1.0</td>
<td>-0.5</td>
<td>-1.1*</td>
<td>1.1</td>
<td>2.0</td>
<td>-2.0</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>(0.7)</td>
<td>(0.9)</td>
<td>(0.6)</td>
<td>(0.7)</td>
<td>(0.8)</td>
<td>(1.1)</td>
<td>(1.8)</td>
<td>(0.9)</td>
<td>(1.0)</td>
<td></td>
</tr>
<tr>
<td>Service Barrier Index</td>
<td>-0.4</td>
<td>-0.7**</td>
<td>-0.5*</td>
<td>-1.5*</td>
<td>-1.1**</td>
<td>-1.5**</td>
<td>-0.8***</td>
<td>-0.5*</td>
<td>-0.7**</td>
</tr>
<tr>
<td>(0.3)</td>
<td>(0.3)</td>
<td>(0.3)</td>
<td>(0.8)</td>
<td>(0.5)</td>
<td>(0.7)</td>
<td>(0.3)</td>
<td>(0.3)</td>
<td>(0.3)</td>
<td></td>
</tr>
<tr>
<td>Firm and Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sec-Year and TTWA-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Sec-, TTWA-, Dest-Year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
</tr>
<tr>
<td>TTWA-Sec F-Stat (Agg, Bilat)</td>
<td>33,49</td>
<td>21,40</td>
<td>12,23</td>
<td>33,49</td>
<td>21,40</td>
<td>12,23</td>
<td>33,49</td>
<td>21,40</td>
<td>12,23</td>
</tr>
</tbody>
</table>
Table 10. Immigrants and Exports of Legal & Related Services: Effect by Country Type

<table>
<thead>
<tr>
<th>Dep. Variable: Log of Export Value of Legal Services</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2SLS: Trade and Immigration with Anglo-Saxon Countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immigrant Share Aggregate</td>
<td>2.2*</td>
<td>0.7*</td>
<td>1.1*</td>
<td>4.6**</td>
<td>2.7**</td>
<td>4.4***</td>
</tr>
<tr>
<td></td>
<td>(1.4)</td>
<td>(0.5)</td>
<td>(0.6)</td>
<td>(2.4)</td>
<td>(1.4)</td>
<td>(2.0)</td>
</tr>
<tr>
<td>2SLS: Trade and Immigration with Non-Anglo-Saxon Countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immigrant Share Bilateral</td>
<td>5.2*</td>
<td>5.5</td>
<td>3.9*</td>
<td>9.8***</td>
<td>8.3***</td>
<td>11.1**</td>
</tr>
<tr>
<td></td>
<td>(3.2)</td>
<td>(5.7)</td>
<td>(1.9)</td>
<td>(3.1)</td>
<td>(2.0)</td>
<td>(5.8)</td>
</tr>
<tr>
<td>Immigrant Diversity</td>
<td>0.2</td>
<td>0.0</td>
<td>0.1</td>
<td>1.2</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td>(0.1)</td>
<td>(0.1)</td>
<td>(0.9)</td>
<td>(0.9)</td>
<td>(1.7)</td>
</tr>
<tr>
<td>Service Barrier Index</td>
<td>-0.4**</td>
<td>-0.5*</td>
<td>-0.3*</td>
<td>-1.2**</td>
<td>-1.0*</td>
<td>-1.1**</td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td>(0.3)</td>
<td>(0.2)</td>
<td>(0.6)</td>
<td>(0.6)</td>
<td>(0.5)</td>
</tr>
<tr>
<td>Firm and Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sec-Year and TTWA-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sec-, TTWA-, Dest-Year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
</tr>
<tr>
<td>TTWA-Sec F-Stat (Agg, Bilat)</td>
<td>33,49</td>
<td>21,40</td>
<td>12,23</td>
<td>33,49</td>
<td>21,40</td>
<td>12,23</td>
</tr>
</tbody>
</table>
We have identified some new facts with respect to immigration and services trade.
We have identified some new facts with respect to immigration and services trade and reconciled these facts with theory.
Concluding Remarks

- We have identified some new facts with respect to immigration and services trade
- and reconciled these facts with theory
- We find that the productivity effects of immigrants are important in explaining services trade
Concluding Remarks

- We have identified some new facts with respect to immigration and services trade
- and reconciled these facts with theory
- We find that the productivity effects of immigrants are important in explaining services trade
 - above and beyond bilateral network effects
Concluding Remarks

- We have identified some new facts with respect to immigration and services trade
- and reconciled these facts with theory
- We find that the productivity effects of immigrants are important in explaining services trade
 - above and beyond bilateral network effects
- Furthermore, the bilateral effects operate differently in the case of services imports
Concluding Remarks

▶ We have identified some new facts with respect to immigration and services trade
▶ and reconciled these facts with theory
▶ We find that the productivity effects of immigrants are important in explaining services trade
 ▶ above and beyond bilateral network effects
▶ Furthermore, the bilateral effects operate differently in the case of services imports
 ▶ Immigrants substitute for some bilateral services offshoring
Table 7b. Immigrants and the Services Exports (Total and Bilateral) of UK firms Non-London TTWAs

<table>
<thead>
<tr>
<th>Dep. Variable: Log of Export Value</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td></td>
<td></td>
<td>OLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immigrant Share Aggregate</td>
<td>3.1***</td>
<td>4.4**</td>
<td>2.9**</td>
<td>2.4**</td>
<td>3.7*</td>
<td>2.6**</td>
</tr>
<tr>
<td>Aggregate</td>
<td>(0.7)</td>
<td>(2.1)</td>
<td>(1.5)</td>
<td>(1.2)</td>
<td>(1.9)</td>
<td>(1.3)</td>
</tr>
<tr>
<td>Immigrant Share Bilateral</td>
<td>13.1*</td>
<td>13.6*</td>
<td>9.5**</td>
<td>8.3*</td>
<td>11.0*</td>
<td>8.5*</td>
</tr>
<tr>
<td></td>
<td>(6.6)</td>
<td>(7.4)</td>
<td>(4.0)</td>
<td>(4.1)</td>
<td>(6.7)</td>
<td>(4.3)</td>
</tr>
<tr>
<td>Immigrant Diversity</td>
<td>-0.2*</td>
<td>-0.1</td>
<td>0.0</td>
<td>-1.5</td>
<td>-0.6</td>
<td>-1.0*</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(0.1)</td>
<td>(0.0)</td>
<td>(1.5)</td>
<td>(0.4)</td>
<td>(0.5)</td>
</tr>
<tr>
<td>Service Barrier Index</td>
<td>-0.8**</td>
<td>-0.5*</td>
<td>-0.6**</td>
<td>-0.6*</td>
<td>-0.3</td>
<td>-0.4</td>
</tr>
<tr>
<td></td>
<td>(0.3)</td>
<td>(0.3)</td>
<td>(0.3)</td>
<td>(0.3)</td>
<td>(0.4)</td>
<td>(0.3)</td>
</tr>
<tr>
<td>Firm and Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sec-Year and TTWA-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sec-, TTWA-, Dest-Year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
</tr>
<tr>
<td>TTWA-Sec F-Stat (Agg, Bilat)</td>
<td>35, 40</td>
<td>15, 33</td>
<td>14, 21</td>
<td>25, 42</td>
<td>18, 34</td>
<td>15, 25</td>
</tr>
</tbody>
</table>

Note: The dependent variable is the logarithm of the value of exports from the firm to a country. The unit of analysis is the firm-export country couple. Each regression contains firm fixed effects and the following controls: log capital investment, the log wage bill, and the log of computer software investments. Number of observations is number of TTWA-Sector-Year cells. Specifications (1), (2) and (3) differ from each other because of the inclusion of different sets of fixed effects described in the table above. The 2SLS regressionsler use as instrument the imputed number of foreign-born in the sector-TTWA cells, constructed as described in the text. The period considered is 1999-2005. Standard errors are clustered at the sector-TTWA level. ***,**,* denote significance at the 1%, 5%, 10% confidence level.
Table 5b. Immigrants and Imports of Services (Offshoring) by UK firms Non-London TTWAs

<table>
<thead>
<tr>
<th>Dep. Variable: Log of Import Value</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immigrant Share Aggregate</td>
<td>11.2**</td>
<td>8.3*</td>
<td>14.8</td>
<td>8.6*</td>
<td>6.4*</td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>(4.5)</td>
<td>(4.9)</td>
<td>(9.7)</td>
<td>(4.0)</td>
<td>(3.1)</td>
<td>(10.1)</td>
</tr>
<tr>
<td>Immigrant Share Bilateral</td>
<td>-3.2**</td>
<td>-3.8**</td>
<td>-5.6*</td>
<td>-3.2*</td>
<td>-3.5*</td>
<td>-4.9*</td>
</tr>
<tr>
<td></td>
<td>(1.3)</td>
<td>(1.7)</td>
<td>(3.3)</td>
<td>(1.7)</td>
<td>(1.7)</td>
<td>(2.8)</td>
</tr>
<tr>
<td>Immigrant Diversity</td>
<td>1.1*</td>
<td>0.6*</td>
<td>3.3*</td>
<td>0.8</td>
<td>0.6</td>
<td>2.2*</td>
</tr>
<tr>
<td></td>
<td>(0.6)</td>
<td>(0.3)</td>
<td>(1.6)</td>
<td>(0.5)</td>
<td>(0.4)</td>
<td>(0.9)</td>
</tr>
<tr>
<td>Service Barrier Index</td>
<td>-0.3**</td>
<td>-0.7*</td>
<td>-0.2***</td>
<td>-0.3*</td>
<td>-0.6*</td>
<td>-0.2*</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(0.3)</td>
<td>(0.0)</td>
<td>(0.2)</td>
<td>(0.3)</td>
<td>(0.1)</td>
</tr>
<tr>
<td>Firm and Year FE</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Sec-Year and TTWA-Year FE</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Sec-, TTWA-, Dest-Year FE</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Number of Observations</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
<td>138,600</td>
</tr>
<tr>
<td>TTWA-Sec F-Stat (Agg. Bilat)</td>
<td>35, 40</td>
<td>15, 33</td>
<td>14, 21</td>
<td>25, 42</td>
<td>18, 34</td>
<td>15, 25</td>
</tr>
</tbody>
</table>

Note: The dependent variable is the logarithm of the value of the imports of traded services by the firm from the country. The unit of analysis is the firm-import-country couple. Each regression contains firm fixed effects and the following controls: log capital investment, the log wage bill, and the log of computer software investments. Number of observations is number of TTWA-Sector-Year cells. Specifications (1), (2) and (3) differ from each other because of the inclusion of different sets of fixed effects included as described in the Table above. The 2SLS regressions use as instrument the imputed number of foreign born in the sector-TTWAs cells, constructed as described in the text. The period considered is 1999-2005. Standard errors are clustered at the sector-TTTWA level. ***,**,* denote significance at the 1%, 5%, 10% confidence level.