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this data. Results indicate that under the assumption of a data generating process that conforms

with SGM theory, data on intra-national trade flows is required for identification. The bias of the

three methods that do not utilize this data, is a result of the correlation between the NDTP variable

and the collinear fixed effects. The MC results and an empirical application demonstrate the severity
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1 Introduction

Estimating the effects of trade policy variables on trade flows is a major interests in international eco-

nomics. Since the seminal paper of Anderson & van Wincoop (2003), there has been a substantial

amount of empirical research involving the econometric estimation of these effects within a structural

gravity framework, noting the importance of theory-consistent treatment of the multilateral resistance

terms (MRT) to obtain unbiased estimates. Most of the empirical applications on the structural gravity

model focused on the estimation of the effects of discriminatory trade policy measures, among them very

prominently regional trade agreements (see Anderson & Yotov, 2016; Bergstrand, Larch & Yotov, 2015;

Egger, Francois, Manchin & Nelson, 2015, for recent contributions). Estimation is mostly done via Poisson

Pseudo-Maximum Likelihood (PPML), including importer and exporter fixed effects in a cross-sectional,

and importer-time, exporter-time fixed effects in a panel setting, to control for the MR-terms.

This identification strategy will, however, fail if the variable of interest lacks variation in both im-

porter and exporter (i.e. importer-time and exporter-time) dimension, since it will be perfectly collinear

to one of the fixed effects. As Head & Mayer (2014) mentioned, such variables will include anything

that affects a country’s propensity to export/import to/from all destinations or sums, averages and dif-

ferences of country-specific variables. Among those, economists are especially interested in the effects of

non-discriminatory trade policy (NDTP) measures on trade flows and subsequent welfare effects. NDTP

measures include most-favored nation tariffs (see Piermartini & Yotov, 2016), export subsidies or pro-

motion (see Lederman, Olarreaga & Payton, 2010) and trade facilitation (see Hoekman & Nicita, 2011;

Beverelli, Neumueller & Teh, 2015), among others.

Estimation of NDTP in structural gravity models has only recently been addressed more thoroughly

in the literature. Head & Mayer (2014) devoted a subsection in their summary contribution of the gravity

model to this topic and Piermartini & Yotov (2016) mentioned the identification problems of the effects

on those variables as one of the challenges in empirical structural gravity estimation. Piermartini & Yotov

(2016) referred to a method recently introduced in Heid et al. (2015), where the authors suggest to use

data on intra-national trade flows to identify the effects of NDTP. Contrary to the MRT captured by the

fixed effects, the NDTP measures should not affect intra-national trade, introducing bilateral variation.

While this identification method is consistent with structural gravity theory and seems very promising,

it requires data on domestic trade, i.e. goods and services that are nationally produced and consumed.

Since data on such flows is often not readily available or reported with a substantial time lag, researchers

have often resorted to different methods to obtain estimates on their NDTP measures of interest.

In cases where data on intra-national trade flows is unavailable, Head & Mayer (2014) and Piermartini

& Yotov (2016) suggested to use a two-stage fixed effects identification strategy, in which the fixed

effects, obtained from the first stage, are regressed onto the NDTP measure and other country-specific

variables. This approach has been frequently applied in empirical research to identify the effects of
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collinear variables (see for instance Eaton & Kortum, 2002; Melitz, 2008; Head & Ries, 2008; Anderson

& Yotov, 2016). Another popular method (see for instance Portugal-Perez & Wilson, 2012; Bratt, 2017)

is the ’Bonus-Vetus OLS’ introduced by Baier & Bergstrand (2009). Here, the MRT are approximated

by the doubly-demeaned trade cost variables, thus avoiding the collinearity problem. Recently, Prehn,

Brmmer & Glauben (2016) motivated the use of a random intercept PPML estimator to identify country-

specific variables in the presence of collinearity. They demonstrated the performance on the US-Canadian

dataset used in Anderson & van Wincoop (2003) and reported estimates for distance and border similar

to a PPML FE estimator, while also being able to obtain estimates on the exporting and importing

countries GDP elasticities.

Despite the increasing interest and discussion surrounding NDTP in structural gravity models, little

is known about the properties of the proposed estimators. In general, there exist only a few Monte

Carlo studies that explicitly take into account a data generating process (DGP) that is consistent with

structural gravity theory (see for instance Baier & Bergstrand, 2009; Head & Mayer, 2014; Egger &

Staub, 2016). Since none of these studies focused on NDTP measures, this paper aims at closing this gap.

The benchmarked methods include (1) fixed effects estimation on intra-national data, (2) Bonus-Vetus,

(3) two-stage fixed effects and (4) random intercept PPML. The latter three are estimated assuming

data on intra-national trade flows is not available, the case in which these methods are usually used in

empirical research. The paper contributes to the existing literature by analysing the properties of these

estimators proposed in the literature in Monte Carlo experiments based on a DGP that is consistent

with an economic motivation of the structural gravity model. As most of the current empirical studies

implement the estimation via PPML, a DGP based on a generalized linear model (GLM) framework will

be employed. The results will be particularly interesting for empirical researchers that have in the past

employed one of the methods or are aiming at identifying the effects of NDTP under a structural gravity

model in upcoming research.

The main finding is that, given a DGP that conforms with structural gravity theory, data on intra-

national trade flows is needed for identification. The bias of the methods that do not employ this data

relates to the correlation of the NDTP variable of interest with the corresponding collinear fixed effects.

The three methods disregarding intra-national observations for identification only yield unbiased estimates

in a scenario in which this correlation is explicitly set to zero. An illustrative empirical application

confirms the direction of the bias that is to be expected if these methods are used.

The remainder of the paper is organized as follows. The next section gives a short introduction

to the structural gravity model and discusses the methods that are benchmarked in the Monte Carlo

experiments. Section 3 describes the Monte Carlo simulation design, outlines the scenarios analysed and

closes with the results. Section 4 demonstrates the methods on an empirical application. A final section

concludes.
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2 Non-discriminatory Trade Policies in Gravity Models

2.1 Structural Gravity Model

As in Egger & Staub (2016), the structural gravity model is motivated on grounds of an endowment

economy with Armington differentiation. To avoid cluttered notation and reduce the computational

effort in the MC simulations, the analysis will focus on a cross-section of aggregate bilateral trade flows

between countries for a given period.1 Each country i = 1, . . . N is endowed with a volume of goods Hi

that it sells at a mill price pi to earn income Yi = piHi. As Anderson & van Wincoop (2003) showed,

the import demand of country j for goods of i satisfies2

Xij =
pαi τ

α
ijYj∑N

k=1 p
α
k τ

α
kj

, (1)

where τij ≥ 1 are the iceberg trade costs and 1−α is the elasticity of substitution (with α < 0) under this

model.3 Imposing the market-clearing condition
∑N
j Xij = Yi to Eq. (1) and solving for the equilibrium

market price yields

p1−αi =
1

Hi

N∑
j=1

ταijpjHj∑N
k=1 p

α
k τ

α
kj

, (2)

which implicitly determines pi and Yi, given α and the joint distribution of τij and Hi (see Egger & Staub,

2016). Substituting this price back into the import demand equation and defining Pαj =
∑N
i=1(piτij)

α as

the CES price index results in the well-known structural gravity model

Xij = YiYj

(
τij

ΠiPj

)α
, (3)

Πα
i =

N∑
k=1

(
τik
Pk

)α
Yk, (4)

Pαj =

N∑
k=1

(
τkj
Πk

)α
Yk, (5)

with Yi and Yj being production and expenditures, whereas for simplicity balanced trade is assumed.

From the definition of the multilateral resistance terms (MRT) given in Eq. (4) and (5) it follows,

that E[Πiτij ] 6= 0, E[Pjτij ] 6= 0 and E[ΠiPj ] 6= 0. Addressing this correlation structure will be a central

feature of the DGP that will be used for the Monte Carlo simulations. To be consistent with a structural

1Note that most of the current research employs panel data sets and/or covers specific sectors or product groups.
Exploiting the time variation via a panel data structure is strongly recommended in Piermartini & Yotov (2016), whereas
they suggest to include every third or fifth year to permit adjustment of trade flows to policy changes. However, note that
for the questions addressed in this paper, a cross-section setting will suffice.

2For simplicity, the exporter-specific preference parameter from the original specification of Anderson & van Wincoop
(2003) is omitted.

3Various types of models motivated from the demand or supply side suggested in the literature yield a model of the
type presented here (see for example Anderson & van Wincoop, 2003; Eaton & Kortum, 2002; Melitz, 2003; Chaney, 2008).
These models only differ in their interpretation of the elasticity of trade flows with respect to trade costs α.
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gravity model, prices pi need to be determined endogenously from the structure of the model. Production

and expenditure in turn depend on the prices and, along with the trade costs, determine the trade flows.

Eqs. (1) and (2) can therefore be used to generate the endogenous variables pi, Yi and the structural

part4 of the trade flows, consistent with the economic structure of the model.

2.2 Econometric Specification

Specifying the unobserved trade costs ταij and introducing a stochastic term, the model given by Eqs. (3)

- (5) can be re-written in a form that can be econometrically estimated. Denoting ei = ln (Yi/Π
α
i ), mj =

ln
(
Yj/P

α
j

)
and specifying the trade costs by a vector of observable variables βDij + γNIPij = ln

(
ταij
)
,

leads to

Xij = exp (ei +mj + βDij + γNIPij) ηij . (6)

To keep the model simple, only one discriminatory trade cost variable Dij and one non-discriminatory

import protection measure NIPij is assumed. A non-discriminatory trade policy, per definition, affects

all trading partners equally, but will not exert an impact on goods and services that are domestically

produced and consumed(see Heid et al., 2015), i.e. Xii. Thus, NIPij = NIPj ∀ i 6= j and NIPjj = 0.

The assumptions about the multiplicative error ηij will determine which model will be identified. For

instance, OLS on a log-linearized version of Eq. (6) will be identified if E(ln ηij |ei,mj , Dij , NIPij) = 0,

i.e. there is no dependence between the covariates and the logarithm of the error term. Assuming

E(ηij |ei,mj , Dij , NIPij) = 1, i.e. the errors are mean-independent of the covariates, permits identifica-

tion via a GLM estimator.5 Santos Silva & Tenreyro (2006) showed that the errors in gravity models of

trade will in general be heteroscedastic and dependent on the covariates. OLS estimation on a log-linear

version of Eq. (6) will then yield biased estimates due to Jensen’s inequality. Furthermore, the presence

of zero flows will provoke ad hoc solutions in log-linear models. Since the bulk of the current empirical

gravity models are estimated in multiplicative form, mostly by PPML following the arguments brought

in Santos Silva & Tenreyro (2006), the focus of this paper will be on GLM estimation with a log-link

function and a Poisson family. GLM estimates will be consistent if the conditional mean function is cor-

rectly specified. The efficiency of the estimator will depend on correct specification of the error variance,

i.e. the linear exponential family of the density chosen.

There are three different approaches towards a theory-consistent estimation of Eq. (6) that controls

for the structure imposed by ei and mj . The most common procedure is to include N − 1 exporter and

N−1 importer fixed effects for ei and mj (see Harrigan, 1996; Feenstra, 2004). A second option is to apply

4The structural part can be obtained by assuming that Eq. (1) only holds in expectation, replacing Xij by E(Xij).
5Recently, Figueiredo, Lima & Orefice (2016) argued that if one assumes that the log-linear model is identified, then

the GLM estimates will be severely biased. Since the researcher cannot know which model is true, they proposed a robust
quantile estimation approach.
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a structurally-iterated estimator (Head & Mayer, 2014; Egger & Staub, 2016). Given a set of starting

values for ei and mj , Eq. (6) is estimated via GLM, restricting the coefficients on ei and mj to one. The

results are used to obtain an estimate of ταij , which is employed to solve for new estimates of ei and mj .

This procedure is repeated until convergence. A third option is the quasi-differences estimation, that

uses two products of country-pairs to net out ei and mj . This can be done either by using just-identified

set of moment conditions (as described in Charbonneau, 2012) or apply a simply ratio-of-ratios estimator

as outlined in Head & Mayer (2014) or Egger & Staub (2016). The latter can be implemented by GLM

estimation on the sets of transformed variables Xs = XikXlj/XlkXij and ds = (dik + dlj) − (dlk + dij)

with d being a trade cost variable.6

2.3 Identification via intra-national trade flows

Given the conditional mean is correctly specified, fixed effects, structurally-iterated and quasi-differences

estimation will yield consistent estimates for bilaterally varying trade cost variables. If data on intra-

national trade flows is available, these methods may also be applied to identify the effects of non-

discriminatory trade policies in a structural gravity model. This identification strategy has just re-

cently been introduced by Heid et al. (2015) and the approach is further discussed in Piermartini &

Yotov (2016). As Piermartini & Yotov (2016) mention, the intra-national dimension turns the monadic

non-discriminatory trade policy variables into dyadic variables. The key identifying assumption is that

non-discriminatory trade policies do not affect intra-national trade. Heid et al. (2015) suggested a fixed

effects panel model that can be formulated as follows for a cross-sectional setting:

Xij = exp
(
λFEi + χFEj + βFEDij + γFENIPij

)
ηFEij . (7)

The unobserved terms ei and mj are captured by the fixed effects λFEi and χFEj . Identification is

possible since the MRT will be identified over all country-pairs, including intra-national trade, while the

non-discriminatory trade policies can be identified by exploiting the variation between intra-national and

international flows.

Note that Eq. (7) may also be estimated via the structurally-iterated and the quasi-differences

approach outlined above. However, the fixed effects estimator has several advantages. In contrast to

the structurally-iterated estimator, the FE estimator imposes no specific structural assumptions on the

MRT. The fixed effects will capture the MRT even if some key variables in determining the trade costs are

omitted or unobserved. Furthermore, the structurally-iterated estimator is more prone to convergence

failures than the fixed effects estimator (see Egger & Staub, 2016). Compared to the quasi-differences

approach, the fixed effects estimator is computationally less demanding and leads to lower standard errors

6Given i 6= l and j 6= k there are numerous sets making estimation computationally demanding. To speed up the
computation, the estimation may be performed on only a subset of all possible combinations, leading to efficiency losses.
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(see Egger & Staub, 2016).

The main disadvantage of the FE estimator is that, while the coefficients are consistently estimated,

the asymptotic variance might be affected by the incidental parameter problem. Cameron & Trivedi

(2005) showed that in a multiplicative model with one-way fixed effects, the incidental parameter problem

can be avoided by using a concentrated likelihood function. Still, in the case of a two-way fixed effect

model such as Eq. (7) the problem remains. Egger & Staub (2016) showed in their Monte Carlo

simulations that the incidental parameter problem strongly affects the t-statistics on their trade cost

measure. As a solution to the problem Jochmans (2017) recently derived a GMM estimator for two-way

multiplicative gravity models. As the focus of this paper is on the bias and consistency of the NDTP

estimates, this is demonstrated in the MC simulations via the simpler fixed effects estimator.

2.4 Identification methods without intra-national trade flows

While there is ongoing interest in the effects of non-discriminatory and unilateral trade policies, the

literature just recently started discussing the issue of their identification in structural gravity models. A

challenge for empirical estimation occurs if data on intra-national flows is not available. This may be the

case because they are not published for the countries of interest, or they are reported with a severe time

lag and do not match the periods for which the data on non-discriminatory trade policies is reported.

Since in such a case the non-discriminatory trade policy measures will not vary over either the exporter

or importer dimension, they will be perfectly collinear to one of the fixed effects and cannot be identified.

Furthermore, the collinearity will lead to convergence failure in the structurally-iterated estimates, since

mj and NIPij cannot be jointly identified. The quasi-differences procedure is also not applicable, since

dik + dlj = dlk + dij and thus ds = 0 for all s, thus none of the three methods discussed above will work.

One way to avoid collinearity is to simply construct a new dyadic variable from two monadic variables,

taking into account that the functional form avoids collinearity. Examples from the literature include Lee

& Park (2007) or Möısé, Orliac & Minor (2011) that analysed the effects of trade facilitation indicators.

However, as Head & Mayer (2014) note, most of the dyadic indicators constructed this way may not

have a straightforward interpretation. Another ad hoc solution to the problem, noted in Piermartini &

Yotov (2016), is to approximate the MRT by remoteness indexes, which has been the common practice

in papers prior to Eaton & Kortum (2002) and Anderson & van Wincoop (2003). Head & Mayer (2014)

discussed various frequently used remoteness measures and found that none of them can capture the

structure imposed by the theory. In a similar manner Piermartini & Yotov (2016) do not recommend the

use of such remoteness measures to substitute MRT or fixed effects.

As a more promising solution to the problem, Piermartini & Yotov (2016) and Head & Mayer (2014)

propose a two-stage fixed effects procedure. First the coefficients on the bilaterally-varying trade cost

variables are estimated along with exporter and importer fixed effects. Then the respective fixed effects of
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the first stage are regressed on the NDTP and other country-specific variables. This two-step procedure

has been frequently used in the literature. For instance, Eaton & Kortum (2001, 2002) used this set-up to

identify key parameters of their trade models, Melitz (2008) estimated the effects of the literacy rate and

a measure of linguistic diversity on trade, and Gylfason, Mart́ınez-Zarzoso & Wijkman (2015) adapted

this procedure on a panel with time-varying non-bilateral data on corruption and democracy. Given

its frequent use, this estimator will be included in the Monte Carlo simulations. Both stages will be

estimated via GLM:

Xij = exp
(
λ2Si + χ2S

j + β2SDij

)
η2Sij (8)

exp
(
χ̂2S
j

)
= exp

(
ψ2S + δ2S lnYj + γ2SNIPj

)
ν2Sj . (9)

The flaws of this procedure for obtaining an estimate of γ2S under fixed effects assumption have been

thoroughly outlined in the discussion that followed the fixed effects vector decomposition (FEVD) model

introduced in Plümper & Troeger (2007). As Greene (2011) noted, it is not possible to identify the

fixed effects and collinear variables under the assumptions of a fixed effects model. Only the preceding

linear mixture of the two is estimable. The parameter γ2S is only separately identified if the fixed

effects assumption E(NIPjmj) 6= 0 is violated. Another related approach to identify collinear variables

was given in Egger (2005), who extended the Hausman & Taylor (1981) model (HTM) to the gravity

framework. Besides being a log-linear model, the HTM imposes strong exogeneity assumptions on the

discriminatory variables used as instruments for the identification of the effects of the NDTP measures.7

Another commonly applied approach to avoid the collinearity problem is the ’Bonus Vetus’ (BV)

method (see Baier & Bergstrand, 2009), that approximates the multilateral resistance terms by a first-

order log-linear Taylor series expansion around a symmetric trade cost world. To implement this method,

compute xMRS
ij = xij − MRS(xij) for each trade cost variable x, with MRS(xij) =

∑N
k=1 xkjθk +∑N

l=1 xilθl −
∑N
k=1

∑N
l=1 xklθkθl and θi = Yi/

∑N
k=1 Yk. The normalized trade flows Xij/(YiYj) are then

regressed on the transformed variables xMRS
ij . A more robust version for estimation purposes is to replace

the GDP-weights with equal weights 1/N (see Baier & Bergstrand, 2010), which assumes a symmetric

world in trade costs and economic sizes. While the BV method was originally derived for OLS on

log-linearized model of Eq. (6), BV-transformed variables haven often been used in PPML estimation

(see Hoekman & Nicita, 2011; Möısé & Sorescu, 2013; Bratt, 2017). Given its continuing popularity in

empirical applications, the BV method (in its more robust, equally-weighted specification) is included in

the Monte Carlo simulations:

7Note that assuming a log-linear model and that all bilateral variables are exogenous, the HTM will yield estimates
similar to the second-stage of the FEVD and the tow-stage FE model.
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Xij/(YiYj) = exp
(
ψBV + βBVDMRS

ij + γBVNIPMRS
ij

)
ηBVij (10)

As for all the methods in this section, it will be assumed that data on intra-national trade flows is un-

available. However, data on intra-national observations for discriminating trade costs or NDTP variables

is usually observed or in the case of NDTP they are per definition zero. The BV-transformation of the

regressors can therefore be applied utilizing the information on the complete dataset of N2 observations,

dropping the transformed intra-national observations prior to estimation. Note that in empirical research

so far, the BV transformation is often applied only to discriminatory trade cost variables while NDTP

variables are included as observed (see for instance Hoekman & Nicita, 2011; Möısé & Sorescu, 2013).

However, it can be shown by MC simulations that such an approach will result in biased estimates even

under the most favourable assumptions concerning the DGP.8

In cases of no missing data and assuming a log-linear model with homoscedastic errors, Head &

Mayer (2014) showed in Monte Carlo simulations that the BV-method yields unbiased estimates for

discriminatory trade policy variables. It can also be demonstrated that under these conditions the BV

method on data including intra-national trade flows also yields unbiased estimates on the NDTP variable.9

Nevertheless, the use of the BV method is often motivated on grounds of collinearity in cases where data

on intra-national flows is missing. It is therefore illustrative to assess the performance of the BV method

in a GLM estimation framework without data on intra-national trade flows.

Estimates of such a model are subject to several sources of bias. First, under a multiplicative non-linear

model with heteroscedastic errors, the log-linearized BV-transformations will lead to biased estimates, as

shown in Santos Silva & Tenreyro (2006). Since the BV method resembles a double-demeaning procedure,

their GLM counterpart would invoke concentrating out the mean effects of exporters and importers or

applying some quasi-differences approach as described above. Such a procedure would strongly complicate

the use of this method, whose popularity is a result of its simplicity for application. A second source of

bias comes from missing observations, a problem that is usually encountered in empirical applications of

the gravity model. As the MC results of Head & Mayer (2014) showed, this bias will be negligible for

discriminatory continuous variables. A third source of bias can be attributed to the correlation between

unobserved effects and the NDTP variable, which will be demonstrated later in this paper.

The last method that will be included in the Monte Carlo simulation is the random intercept PPML,

recently proposed by Prehn et al. (2016) for the use in gravity models. They applied this estimator

to the Anderson & van Wincoop (2003) data set and reported estimates on the distance and border

coefficients, that are virtually identical to those obtained via fixed effect PPML. Additionally, they are

able to estimate the coefficients on the countries incomes Yi and Yj and claim that this method allows

8See Table (5) and the accompanying text in the Appendix.
9See Table (5) in the Appendix.
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to analyze policy-relevant importer or exporter-specific variables such as tariffs and infrastructure. The

random intercept PPML can be written as:

Xij = exp
(
λRIi + χRIj + βRIDij + γRINIPij

)
ηRIij , (11)

λRI0i ∼ N(0, σ2
λ0i

), (12)

χRI0j ∼ N(0, σ2
χ0j

), (13)

with priors λRI0i and χRI0j on the importer and exporter effects.10 Identification of the NDTP variable

within this model is possible because the individual exporter and importer effects are modelled via random

effects. In large samples the effect of the prior will vanish and the Laplace approximation employed in

the estimation algorithm used in Prehn et al. (2016) will push the posterior mode towards the maximum-

likelihood estimator of the fixed effects model. Therefore the estimates on their discriminatory trade

policy variables are identical to the fixed effects PPML. If the random intercepts tend to coincide with

the fixed effects, one would expect the collinear country-specific variables to be identified in similar

manner than in the two-stage FE approach. Thus, if these variables are correlated with the unit effects,

biased estimates are expected. As in Prehn et al. (2016), the glmer function of the R-package lme4 (see

Bates, Mächler, Bolker & Walker, 2015) with random intercepts and a Poisson family will be used in the

MC simulations.

For comparison to the above models, a naive gravity model is added to the MC simulations:

Xij = exp
(
ψnaive + βnaiveDij + γnaiveNIPij + ω1 lnYi + ω2 lnYj

)
ηnaiveij . (14)

The naive model relates to the basic Newtonian model with exporters and importers GDP’s as mass

variables. Estimates of γ obtained by the naive gravity model are biased since they omit the MRT that

are correlated with the NDTP variable. Note that prior to the structural gravity model, researchers

usually extended the naive gravity model by remoteness indexes. As mentioned before, none of the

remoteness variables suggested captures the structure implied by the MRT. In order to avoid selecting

an arbitrary remoteness index for an augmented gravity model, the naive gravity model is used as a

benchmark.

3 Monte Carlo Simulations

Monte Carlo simulation studies based on a DGP that is consistent with structural gravity theory are still

scarce. Baier & Bergstrand (2009) employed Monte Carlo simulations to motivate that their Bonus Vetus

10Note that applying the random intercept PPML on the full dataset including intra-national flows will yield estimates
similar to the FE model proposed by Heid et al. (2015).
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OLS method yields results similar to the customized non-linear least squares estimator of Anderson &

van Wincoop (2003). They used observed data on GDP, distance and borders of the McCallum (1995)

Canadian-US province trade dataset for the simulation analysis, fixing the coefficients on distance and

border to a true value. The obtained trade costs were used to solve for the MRT, which were in turn

used to construct the expected trade flows of their log-linear model. Prior to estimation they added

a log-normal error term with a variance such that a non-structural gravity regressions yields an R2 of

between 0.7 to 0.8.

Head & Mayer (2014) adopted a similar approach, using actual data on GDP, distance and regional

trade agreements. In contrast to Baier & Bergstrand (2009) they included the log-normal error term

in the trade cost, prior to calculation of the MR-terms, rather than prior to estimation as in Eq. (6).

They emphasize this difference in design, noting that they pursued a structural instead of a statistical

approach to the error term.11 The variance of their error term was calibrated to the root mean squared

error of a least squares dummy-variable regression on their data. Similar to Baier & Bergstrand (2009),

they restrict their analysis to log-linear models and benchmarked a series of linear estimators, including

fixed effects, structurally-iterated, quasi-differences and BV.

As the focus of this paper is on GLM estimation, the simulation approaches of Baier & Bergstrand

(2009) and Head & Mayer (2014) for log-linear models cannot be applied. The DGP that will be used

in the following, is based on the design recently introduced in Egger & Staub (2016). As in Baier &

Bergstrand (2009) their DGP consists of an deterministic structural part that determines the expected

trade flows and a stochastic part that introduces noise subsequently. Contrary to Baier & Bergstrand

(2009) and Head & Mayer (2014), all regressors are simulated, which allows for a controlled adjustment

of their correlation and dispersion properties.

3.1 Data Generating Process

The first part of the DGP is the deterministic component, that obeys the structural gravity theory and

will be realized in expectation. Extending the framework of Egger & Staub (2016) by an importer-specific

NDTP variable, three correlated variables are drawn from a multivariate normal distribution

zHij , z
D
ij , z

NIP
ij ∼MVN (µz,Σz) (15)

11While this approach is appealing, adoption of the Head & Mayer (2014) DGP in a GLM framework with heteroscedastic
errors is not straight forward.
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with covariance matrix

Σz = vz ×


σ2
H r12 × σHσD r13 × σHσNIP

r12 × σDσH σ2
D r23 × σDσNIP

r13 × σNIPσH r23 × σNIPσD σ2
NIP

 , (16)

Means, standard deviations and correlations are set similar to Egger & Staub (2016), i.e. µz = (3,−2, 0),

σH = 3
√
N/4, σD = σNIP = 5 and r12 = r13 = r23 = 0.95. In the baseline scenario the variance scaling

factor vz is set to 0.1. Endowments, discriminatory and NDTP variables are then obtained by

Hi = exp

 N∑
j=1

zHij /N

N, (17)

Dij =

(
exp

(
zDij
)

1 + exp
(
zDij
))−α/4

, (18)

NIPj =

(
1/N

N∑
i=1

exp
(
zNIPij

)
1 + exp

(
zNIPij

))−α/4

, (19)

with α = −4 in the baseline scenario, following Anderson & van Wincoop (2003). The variables are

constructed for the full set of N2 trade flows including intra-trade flows. The non-discriminatory trade

policy variable is constructed as NIPij = ιN ⊗NIPj and setting NIPii = 0 ∀ i = 1, . . . , N , with ιN

being a unit column vector of size N . Increasing N will increase the mean and variance but will not affect

the coefficient of variation or the endowment share of a country relative to the world. The total trade

cost component Tij = τα is then specified by:

lnTij = βDij + γNIPij . (20)

The coefficients of the DGP are set to β = γ = 1 to facilitate comparison. Equations (18) and (19) ensure

that the resulting trade costs satisfy Tij ∈ (0, 1). The structural part is derived using Hi and Tij to solve

for pi in Eq. (2). Recognizing that Eq. (1) only holds in expectation, Yi = piHi and Tij = τα are then

used to obtain E(Xij) = µij .

In the next step, the observed trade flows are obtained from the structural part by multiplying the

stochastic with the deterministic component

Xij = µijηij . (21)

The errors ηij with E(ηij) = 1 are drawn from the heteroscedastic log-normal distribution

ηij = exp
(
zηij
)
, zηij ∼ N(−0.5σ2

η,ij , σ
2
η,ij). (22)
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Most of the simulations exercises are carried out assuming σ2
η,ij = vη × ln

(
1 + µ−1

ij

)
with an according

variance inflation factor set to vη = 1 in the baseline setting. In this setting, GLM with a Poisson variance

function, i.e. PPML, will lead to an asymptotically efficient estimator.

The following steps are performed to derive the DGP in each replication of an MC experiment. First,

the three latent variables are jointly drawn and Hi, Dij and NIPij are constructed according to Eqs.

(17) - (19). In the second step, these variables are used to solve for the deterministic part using Eq. (1)

and (2). The third step finalizes the DGP by adding the stochastic part, as described in Eq. (21) and

(22), to the deterministic component.

3.2 Description of MC Scenarios

The DGP described above will be employed to carry out eight different scenarios. In each of the scenarios,

one of the key features of the DGP affecting the dispersion or correlation properties of the data will be

varied. Each scenario is simulated for the following five methods outlined above: (1) non-structural

gravity model (naive), (2) Bonus-Vetus with equal country weights 1/N (BV), (3) Two-stage fixed effects

estimator (2S), (4) Random Intercept Model (RI) and (5) Fixed Effects on intra-trade flow dataset (FE-

intra).

Method (5) is estimated on the whole dataset, constructed by the DGP described above, with N2

observations including the intra-national dimension. Prior to estimation of the methods (1)-(4), the N

observations corresponding to the intra-national trade flows i = j are dropped. All methods are estimated

by PPML, regardless of the underlying DGP variance function of a particular scenario. In each scenario,

S = 10, 000 replications of the DGP for a small (N = 10) and a medium-sized sample with N = 50

countries are performed. The impact of a particular scenario on some key properties of the generated

data is summarized in Table (1).

The first scenario covers the baseline parametrization of the DGP given by α = −4, vz = 0.1,

r12 = r13 = r23 = 0.95, σ2
η,ij = vη × ln

(
1 + µ−1

ij

)
and vη = 1. The left panel in Table (1) shows the data

properties for the two sample sizes of the baseline scenario. The dispersion measured by the coefficient

of variation (CV ) increases with the sample size for the generated trade flows Xij , but decreases for the

unobserved components ei, mj and the non-discriminatory variable NIPj . Furthermore, a larger sample

size reduces the correlation - denoted by ρ(·, ·) - between the total trade costs Tij and endowments Hi as

well as between NIPj , Dij and mj , respectively.

In scenario 2, the correlation between NPIj and mj is reduced by setting the respective correlation of

the latent variables zHij and zDij with zNIPij , i.e. r13 and r23, to zero. The right panel of Table (1) summa-

rizes the data properties for the sample size N = 50, when deviating form the baseline parametrization.

Setting r13 = r23 = 0 decreases the dispersion in mj and markedly reduces the correlation between

NIPj and mj from -0.65 to -0.27. Since a major source of bias for methods without intra-national flows
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will stem from this correlations, it is effectively set to zero in scenario 3. To achieve this, the DGP

described above needs to be slightly modified. First, the auxiliary variables are drawn as before but

disregarding zNIPij in Eqs. (15) and (16). Then NIPj is drawn form a standard normal distribution such

that ρ(NIPj ,mj) = 0.12 Then construct lnTij =

(
exp(zDij)

1+exp(zDij)

)−α/4

and derive βDij = lnTij − γNIPij .

Besides ensuring ρ(NIPj ,mj) = 0, this modification of the DGP further increases the dispersion of Dij ,

and introduces a substantial negative correlation between the Dij and NIPij . The coefficient of variation

is suppressed in Table (1) since NIPj has zero mean in this scenario.

The next two scenarios are taken from Egger & Staub (2016). Scenario 4 simulates the effects of an

increased dispersion in endowments and trade flows, by setting vz = 0.3. As shown in Table (1) this

effectively increases the dispersion in all components of the structural part of the DGP. In scenario 5, a

higher elasticity of substitution is assumed by setting α = −9. Compared to scenario 4, this exerts an

even stronger impact on the dispersion of the trade costs and flows, which is nearly doubled.

Scenario 6 simulates additional noise in the stochastic component by increasing the variance in-

flation factor of the error term vη. The baseline specification of vη = 1 leads to a pseudo-R2 =

V (µij)/ [V (µij) + V (Xij − µij)] of around 0.95. Setting vη = 9 decreases this measure to an average

of 0.68.

Table 1: Data Properties

Baseline Variations with N = 50
N = 10 N = 50 r13 = r23 = 0 ρ(NIPj ,mj) = 0 vz = 0.3 α = −9 vη = 9

CV (Hi) 0.23 0.24 0.24 0.24 0.42 0.24 0.24
CV (Tij) 1.13 1.07 1.06 1.03 1.18 2.18 1.07
CV (Xij) 1.05 1.12 1.12 1.10 1.39 2.08 1.34
CV (Dij) -0.57 -0.57 -0.57 -0.71 -0.82 -0.57 -0.57
CV (NIPij) -0.42 -0.18 -0.18 - -0.20 -0.18 -0.18
CV (ei) 0.18 0.11 0.11 0.11 0.23 0.23 0.11
CV (mj) 0.59 0.32 0.28 0.27 0.47 0.55 0.32
ρ(Tij , Hi) 0.23 0.12 0.12 0.12 0.11 0.09 0.12
ρ(Dij , NIPij) 0.16 0.08 0.00 -0.60 0.09 0.07 0.08
ρ(NIPj ,mj) -0.79 -0.65 -0.27 0.00 -0.53 -0.72 -0.65
pseudo−R2 0.95 0.96 0.96 0.96 0.98 0.99 0.68

Note: The table contains the mean statistics of 10,000 replications.

Following Head & Mayer (2014), the effects on the estimates if some proportion of the data is missing,

as is often the case in empirical applications, are simulated in scenario 7. The DGP is simulated for a

sample ofN = 100 countries and then 10 (50) countries are randomly selected. Estimation is performed on

the sub-sample corresponding to observations containing the selected countries as exporter or importers.

Other than that, the baseline parametrization of the DGP is employed in this scenario.

In scenario 8, the robustness of the PPML estimator with respect to different assumptions of the

variance process is assessed. In a GLM the choice of the linear exponential family distribution will lead

12First orthogonalize a standard normal variable (zj) to the centered and scaled effect mj , then scale both vectors to

length one (m̃j , z̃j) and compute ζ̃j = z̃j + 1/ tan(arccos(r)) ∗ m̃j for an exact sample correlation r, with r = 0.
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to a particular variance function, under which the estimator is asymptotically efficient. In the baseline

scenario the errors are drawn from Eq. (22) with σ2
η,ij = ln

(
1 + µ−1

ij

)
, resulting in V (xij) = µij , i.e.

a Poisson family. While the PPML is most frequently used in empirical research, other applied PML

estimators include Gamma (see Santos Silva & Tenreyro, 2006; Mart́ınez-Zarzoso, 2013) and Negative

Binomial (see Burger, Van Oort & Linders, 2009; Head, Mayer & Ries, 2009). Estimators of these

families will be optimal in terms of efficiency if σ2
η,ij = ln (2) and σ2

η,ij = ln
(
2 + µ−1

ij

)
, respectively.13 As

a robustness check for the PPML, it will be applied to a DGP with a Gamma or Negative Binomial14

variance function for the stochastic component. Changes in the error distribution will only affect the data

properties via the dispersion in the generated trade flows and the pseudo-R2. Specifying either a Gamma

or a Negative Binomial family, increases the dispersion in trade flows to around 1.85 and decreases the

pseudo-R2 to 0.36 in both cases (not reported in Table (1)).

The MC results will be summarized by the mean bias of the estimate from the true value given by

1/S
∑
s (γ − γ̂s) and the standard deviation of the estimate

√
1/S

∑
s (γ̂s − 1/S

∑
s γ̂s)

2
for the coefficient

estimates on Dij and NIPj , covering only replications in which the estimation algorithms of the respective

method converged. The number of successful convergences in percent of total replications is given by

CR.

3.3 Simulation Results

The upper panel in Table (2) summarizes the results for the baseline scenario. Recall that the methods

naive, BV, 2S and RI are estimated on the sub-sample excluding intra-flows, while FE-intra is estimated

on the full sample of N2 observations. The first column shows that all estimators disregarding the intra-

national flows yield severely biased coefficient estimates on the non-discriminatory variable NIPij . Since

the true value of the coefficient on the NDTP measure was set to one, the naive, 2S and RI method yield

estimates that are biased downwards in a magnitude of more than 200%. Conversely, the BV estimate

is biased upward by nearly 200% and results in by far the highest standard deviations. Increasing the

sample size (right panel) has no noticeable effect on the bias of the naive, 2S and RI estimates, but

decreases their respective standard deviation. The bias of the BV estimate is increased by a factor of

4 and the standard deviation is doubled. Note that for the medium-sized sample the random intercept

model experiences converge failures of around 7.5% of the times.

By contrast, the FE-intra estimator results in virtually unbiased estimates of the coefficients on the

NDTP variable. This result was to be expected, since this estimator adequately represents the underlying

data generating process and exploits the identifying variation between the international and intra-trade

flows. Besides being unbiased the FE-intra method yields the lowest standard deviation of the NDTP

13Note that Head & Mayer (2014) advised against the use of a Negative Binomial GLM, due to the scale dependency
of its estimates, as shown in Bosquet & Boulhol (2014). Furthermore, Fally (2015) put forward that only the PPML with
fixed effects automatically satisfies the constraints of the structural gravity model.

14As in Egger & Staub (2016), the over-dispersion parameter is fixed at 1.
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variable, with the desirable asymptotic property of further decreasing with increasing sample size. Note

that the effect on the discriminatory variable is estimated more efficiently than the estimate on NDTP,

since the latter only is identified by N observations.

Turning to the results of the discriminatory variable Dij , the naive and BV method yield biased

estimates as expected. The bias in the naive estimate is entirely due to the omission of the MRT. However,

Egger & Staub (2016) note that as the sample size goes to infinity, the problem that E(Dijei) 6= 0 and

E(Dijmj) 6= 0 will vanish and so will the bias of this misspecified model. While this is true for the

discriminatory variable, the results in Table (2) indicate that the bias on the NDTP estimate will not

vanish.15 As expected, the 2S and RI method yield unbiased and efficient estimates of the discriminatory

trade cost variable, since they fully control for the MRT.

Table 2: MC results for baseline and reduced correlation scenarios

N=10 N=50
NIPij Dij NIPij Dij

Bias SD Bias SD CR Bias SD Bias SD CR

Baseline

naive -2.44 0.40 -0.07 0.03 1 -2.51 0.15 -0.02 0.00 1
BV 1.92 3.33 -0.13 0.05 1 13.54 6.83 -0.04 0.01 1
2S -2.56 0.57 0.00 0.04 1 -2.56 0.18 0.00 0.01 1
RI -2.58 0.67 0.00 0.00 1 -2.57 0.43 0.00 0.00 0.9259
FE-intra 0.00 0.09 0.00 0.03 1 0.00 0.03 0.00 0.01 1

r13 = r23 = 0

naive -0.87 0.70 -0.14 0.06 1 -0.96 0.27 -0.04 0.01 1
BV 0.38 3.34 -0.13 0.05 1 0.86 6.90 -0.04 0.01 1
2S -0.82 1.04 0.00 0.04 1 -0.96 0.31 0.00 0.01 1
RI -0.87 0.93 0.00 0.00 0.9943 -0.97 0.49 0.00 0.00 0.9245
FE-intra 0.00 0.09 0.00 0.03 1 0.00 0.03 0.00 0.01 1

ρ(NIPijmj) = 0

naive -0.15 0.09 -0.15 0.06 1 -0.04 0.02 -0.04 0.01 1
BV -0.15 0.48 -0.15 0.05 1 -0.04 0.52 -0.04 0.01 1
2S -0.02 0.18 0.00 0.03 1 0.00 0.04 0.00 0.01 1
RI 0.00 0.04 0.00 0.00 1 0.00 0.01 0.00 0.00 1
FE-intra 0.00 0.10 0.00 0.03 1 0.00 0.03 0.00 0.01 1

Note: All estimations are performed by PPML. Results are based on 10,000
replications.

The middle panel of Table (2) demonstrates the effect of decreasing correlation between the NDTP

and the respective collinear effect mj on the bias and efficiency of the methods. Compared to the upper

panel, the bias of the effect on the NDTP variable is substantially reduced but still amounts to -87%

or +38%, depending on the method used. To push the argument even further, the lower panel in Table

(2) shows the MC outputs when setting the sample correlation to zero. In this scenario, the RI method

results in virtually unbiased estimates for the NDTP, even in small samples. The 2S estimate is only

15To illustrate the persistence of the bias on the NDTP estimate of the naive gravity model, see the MC results in Table
(6) in the Appendix.
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marginally biased in the small sample and unbiased up to the second digit in the medium-sized sample.

The naive gravity model and the BV estimates remains biased in a similar order of magnitude. In fact

it can be demonstrated that assuming a constant variance σ2
η,ij = σ2

η in Eq. (22) of the DGP and

applying OLS to a log-linearized version of Eq. (10) will result in unbiased estimates on NIPij and

Dij .
16 Thus, the remaining bias on the BV estimates in this scenario is entirely due to the usage of a

log-linear transformation in a multiplicative model set-up. This scenario clearly illustrated that the main

source of bias in NDTP of the methods disregarding intra-national flows is due to the correlation between

NIPj and the unobserved mj .

In the remaining scenarios, the correlation structure will correspond to the baseline scenario setting.

As the BV, 2S and RI method were severely biased in the baseline scenario, MC results for the remaining

scenarios will only be reported for the FE-intra method, for brevity. Results for all methods are given

in Table (7) in the Appendix. Table (3) shows the results of all eight scenarios for the FE-intra method

only. The first three scenarios are repeated for comparison.

Increasing the overall dispersion of the latent variables or assuming a higher elasticity of substitution,

see rows (4) and (5), introduces a marginal bias of 1% in the small sample. Setting vz = 0.3 also slightly

worsens the efficiency of NDTP estimate, while α = −9 mildly reduces the standard deviation of the

NDTP estimate. Increasing the error variance, by setting vη = 9, has a more pronounced effect on the

efficiency of the estimate, as would be expected. Still, assuming a Poisson distribution in the DGP, the

FE-intra method estimated by PPML leads to unbiased estimates of NIPij , even in the small sample.

Randomly dropping either 10% (left panel) or 50% (right panel) of the sample has virtually no effect on

bias and efficiency (see row 7).

Table 3: MC results for FE-intra estimator for all scenarios

N=10 N=50
NIPij Dij NIPij Dij

Bias SD Bias SD Bias SD Bias SD

(1) baseline 0.00 0.09 0.00 0.03 0.00 0.03 0.00 0.01
(2) r13 = r23 = 0 0.00 0.09 0.00 0.03 0.00 0.03 0.00 0.01
(3) ρ(NIPij ,mj) = 0 0.00 0.10 0.00 0.03 0.00 0.03 0.00 0.01

(4) vz = 0.3 0.01 0.11 0.00 0.03 0.00 0.03 0.00 0.01
(5) α = −9 0.01 0.07 0.00 0.03 0.00 0.02 0.00 0.00
(6) vη = 9 0.00 0.32 0.03 0.13 0.00 0.11 0.00 0.03
(7) missing 90%/50% 0.00 0.10 0.00 0.03 0.00 0.03 0.00 0.01

(8a) Gamma -0.06 0.52 0.00 0.14 -0.03 0.28 0.00 0.03
(8b) Negative Binomial -0.06 0.53 0.00 0.14 -0.03 0.27 0.00 0.03

Note: All estimations are performed by PPML. Results are based on 10,000 replications.

In scenario eight, the DGP assumes a variance function that corresponds to a Gamma-PML (8a) or

Negative Binomial PML (8b) as an efficient estimator. Since the conditional mean function is correctly

16See Table (5) in the Appendix.
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specified in the PPML, the estimates should be unbiased and consistent. For both variance assumptions,

estimates on the NDTP show a small sample bias of 6%, that reduces to 3% in the medium-sized sample.

By contrast, the discriminatory variable is estimated without bias even in the small sample. In the small

sample, the standard deviations of both estimates are increased by a factor of 5 compared to the baseline

scenario. Increasing the sample size to N = 50 decreases the standard deviation on the NDTP measure

by around 40%. Still, compared to the estimate on the discriminatory measure, the effect of NDTP is

estimated less efficiently, as expected from a GLM with misspecified variance function.

4 Empirical Application

This section illustrates the methods discussed above in an empirical application. It should be noted

that it is not the purpose of this application to derive exact estimates on the effects of the trade cost

variables used, but to demonstrate the impact of the methods on the estimates of the NDTP variable.

For a thorough analysis of the effects of trade policy measures on trade flows in structural gravity model,

the challenges summarized in Piermartini & Yotov (2016) should be adequately addressed. On the issue

of intra-national trade flow data, Piermartini & Yotov (2016) note that because such data will not be

readily available, their use requires caution. The following application will therefore be based on an

existing database, namely CEPII’s ’TradeProd’ (see de Sousa, Mayer & Zignago, 2012), that covers

approximately 150 countries between 1980-2006 at a 3-digit level of the ISIC Revision 2 manufacturing

industries.

TradeProd includes data on production, consumption as well as internal and international trade

flows. Since trade flows and internal consumption are not available for the ISIC aggregation 300 ’total

manufacturing’, an industry and a year is chosen that maximized the sample size with respect to data

availability. This led to the selection of the industry 311 ’Food products’ and the year 2000, resulting in

a total of 63 countries. Including data on intra-national flows a total of 3,963 observations is available,

leading to sample of 3,900 observations for the estimators disregarding the intra-national flows (naive,

BV, 2S and RI).

As a measure of non-discriminatory trade policy the most-favoured nation (MFN) tariff was selected.

The MFN for the year 2000, calculated as a weighted mean of food products, was taken from the UNCTAD

TRAINS database accessed via the World Integrated Trade Solution (WITS) website. As is common

practice with data on tariffs, the variable will be included as ln(MFNij + 1). Data on geographical

distances17, shared borders and common language18 is taken from the CEPII GeoDist database (see

Mayer & Zignago, 2011) and information on regional trade agreements is obtained from ’Mario Larchs

Regional Trade Agreements Database’ (see Egger & Larch, 2008). Shared borders (BORDERij), common

17Bilateral and internal distances are measured by the distances between the main agglomerations, between and within
countries, weighted by their population share.

18This dummy variable takes the value one if countries share either an ethnic or official language and zero otherwise.

17



language (COMLANGij) and regional trade agreements (RTAij) enter as dummy variables and distances

are included in logarithms (lnDistij). The descriptive statistics of the data are summarized in Table (8)

in the Appendix.

In the application, the production and consumption coefficients are not restricted to unity, so the

Bonus-Vetus method (BV) and the non-structural model (naive) include these additional variables in

logarithms. In the second stage of the two-stage fixed effect method (2S), the antilogs of the fixed effects

of the importer countries are regressed onto the MFN measure and the log of consumption. All methods

are estimated via PPML and standard errors reported are heteroscadsticity-robust sandwich estimates,

except for the random intercept PPML method (RI). The fixed effects model on the sample including the

intra-national trade flows (FE-intra) was estimated including a ’home’/’same country’ dummy variable

that takes value one for intra-national flows and zero otherwise (as in Heid et al., 2015).

Table 4: Estimation Results

(1) naive (2) BV (3) 2S (4) RI1 (5) FE-intra

ln(1 +MFNij) -0.68 -175.60∗∗∗ -1.04 -0.78 -5.48∗∗∗

(0.68) (25,59) (1.12) (1.51) (0.733)
lnDistij -0.60∗∗∗ -0.90∗∗∗ -0.85∗∗∗ -0.85∗∗∗ -0.87∗∗∗

(0.09) (0.09) (0.06) (0.01) (0.06)
BORDERij 0.68∗∗∗ 0.47∗∗∗ 0.56∗∗∗ 0.56∗∗∗ 0.55∗∗∗

(0.15) (0.15) (0.10) (0.01) (0.13)
RTAij 0.14 0.44∗∗∗ 0.50∗∗∗ 0.50∗∗∗ 0.33∗∗∗

(0.17) (0.14) (0.11) (0.01) (0.09)
COMLANGij 0.36∗∗∗ -0.001 0.29∗∗ 0.29∗∗∗ 0.25∗∗

(0.12) (0.14) (0.12) (0.01) (0.10)

Two-way fixed effects No No (Yes) Yes Yes
Xii included No No No No Yes
Obs. 3900 3900 3900 / 63 3900 3963

Note: All estimations were performed by PPML with heteroscedasticity-robust sandwich
standard errors (except for random intercept model). 1 Robust standard errors are currently
not supported for generalised linear mixed models in the lme4 package. ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01

The estimates on the coefficients corresponding to all methods are reported in Table (4). Size and sign

of the coefficients on distance, border, regional trade agreement and common language are comparable

to the meta-study values given in Head & Mayer (2014). As a benchmark for comparison on the size,

sign and standard error of the coefficient on the MFN, the FE-intra method in column (5), as the best

performing method from the MC simulations, is chosen. As expected, the MFN has a negative impact

on bilateral trade flows, which is estimated at -5.48, a value very similar to the one estimated for food

products in Heid et al. (2015). The coefficient is precisely estimated, with a heteroscedasticity-robust

standard error of 0.73, and is highly significant at conventional levels.

The other four methods, disregarding intra-national trade flows, all yield negative coefficients with

varying sizes and precision. As shown in the MC simulations, given a positive true coefficient, the
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naive gravity, 2S and RI method were biased downwards while the BV estimate were biased upwards.

Conversely, for negatively signed effects of the NDTP variable, the sign of the bias will switch. Hence, it is

expected that the naive gravity, 2S and RI method will result in estimates that are biased upwards while

the BV estimates should be biased downwards. The results in columns (1) to (4) are in line with these

expectations. Statistically significant coefficients are only estimated in the BV model. The coefficient

of the BV method is far below the value of the FE-intra method, indicating a severe downward bias

as suggested by the MC results of the medium-sized sample in Table (2). Note that in the empirical

application, additional bias will be introduced in the BV estimate, as the method only controls for MRT

on the observed variables. Omitted trade cost variables will, thus, introduce further bias via the MRT as

will other omitted importer-specific trade shifters that are correlated with the MFN variable.

5 Conclusions

In this paper, Monte Carlo evidence on the properties of estimators for identifying the effects of non-

discriminatory trade policy (NDTP) variables on trade flows in a structural gravity model (SGM) were

presented. The benchmark included the fixed effects estimator on data covering intra-national obser-

vations (as suggested by Heid et al., 2015), and three estimators that do not use information on these

domestic trade flows: the Bonus-Vetus method (see Baier & Bergstrand, 2009), a two-stage fixed effects

procedure (as suggested by Head & Mayer, 2014; Piermartini & Yotov, 2016) and the recently proposed

random intercept PPML estimator (see Prehn et al., 2016). These latter three methods have been used or

suggested to overcome the collinearity problem that researchers face when trying to identify NDTP effects

while using exporter and importer fixed effects or other theory-consistent estimation frameworks. The

data generating process (DGP) is based on an economic motivation of the SGM and satisfies the correla-

tion properties and endogenous relationships that are postulated by theory and addresses the empirically

observed heteroscedasticity of the data. The bias and standard deviation of Poisson Pseudo-Maximum

Likelihood estimates on the NDTP measure have been analysed in a series of scenarios.

The results indicate that data on intra-national trade flows is needed to robustly identify the effects

of NDTP variables. None of the three methods disregarding intra-national observations yielded unbiased

and efficient estimates under all assumed parametrizations and correlation structures of the DGP. The

key assumption for identification of the NDTP effect in those three models is that the NDTP and

the corresponding collinear multilateral resistance term (or fixed effect) are uncorrelated. Since this

assumption will likely be violated in a SGM, it is suggested that researchers refrain from the use of

those methods. The MC results indicated severely biased, inconsistent and inefficient estimates obtained

by those methods, even in more favourable parametrizations of the DGP. Additionally, an empirical

application supported the results of the MC simulations, pointing towards additional caution in the use
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of the Bonus-Vetus method. It was also shown that there is no free lunch by using a random intercept

model as suggested by Prehn et al. (2016). While this method leads to estimates on discriminatory

variables similar to a fixed effects PPML, collinear correlated variables are still not identified.

In a next step, the robustness of the fixed effect estimator using information on domestic trade flows

was assessed under different scenarios. The estimates remain unbiased when increasing the dispersion

in the trade flows, endowments of countries and the latent structural terms, in cases of a higher error

variance or in the presence of missing observations. However, PPML estimates of this method show

small and medium sample size bias on the NDTP measure if a Gamma or Negative Binomial family of

the GLM are assumed in the DGP. Another issue worth mentioning relates to the incidental parameter

problem, that has not been addressed explicitly in the paper. Since Egger & Staub (2016) recently

presented evidence that a two-way fixed effects estimator on multiplicative models will be prone to that

problem, future empirical research should be open to new means of estimation, for instance by quasi-

differences, concentrated likelihoods or generalized method of moments (see for instance Charbonneau,

2012; Jochmans, 2017).
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Appendix

Table (5) shows the MC results of the BV method under different DGP assumptions and applications

of the method. The left panel shows the OLS estimates of a log-linear model with a DGP assuming

σ2
η = 0.3. The results of the PPML estimates on the multiplicative model with heteroscedastic variance

σ2
η,ij = ln

(
1 + µ−1

ij

)
are given in the right panel. In the upper panel the baseline scenario parametrizations

are used, whereas the lower panel reports the results of restricting the correlation between the NDTP and

the unobserved effect mj to zero (see scenario 3). The respective BV methods via OLS (left panel) and

PPML (right panel) are applied for either the full sample including intra-national trade flows (N2) or

the sub-sample of international trade flows (N2 −N). Additionally, separate experiments are conducted

applying the BV-transformation to either both variables or just the discriminatory trade cost measure,

as is often done in empirical research.

Assuming a log-linear homoscedastic model and estimating the BV method with transformations

applied to both variables via OLS on the complete dataset yields unbiased estimates. Applying the BV

transformation only to the discriminatory trade cost variable Dij results in a downward bias of 18%. This

bias is even amplified in the scenario assuming no correlation between the NDTP and the importer fixed

effect. By contrast, applying the transformation to NDTP variable as well leads to unbiased estimates

under this scenario. Comparing the results of the left and the right panel, the bias that is due to the
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Table 5: Bonus-Vetus MC results

DGP - OLS DGP - GLM
NIPij Dij NIPij Dij

Sample BV on Bias SD Bias SD Bias SD Bias SD

Baseline

N2 both 0.00 0.25 0.00 0.05 -0.18 0.15 -0.16 0.05
N2 Dij -0.18 0.26 0.00 0.05 -0.29 0.32 -0.15 0.09
N2 −N both 2.37 4.62 0.01 0.05 1.90 3.32 -0.13 0.05
N2 −N Dij -0.49 0.59 0.01 0.05 -0.54 0.65 -0.12 0.09

ρ(NIPijmj) = 0

N2 both 0.00 0.21 0.00 0.05 -0.15 0.14 -0.15 0.05
N2 Dij -0.92 0.09 -0.05 0.05 -0.93 0.10 -0.21 0.09
N2 −N both 0.00 0.05 0.00 0.70 -0.15 0.48 -0.15 0.05
N2 −N Dij -0.91 0.09 -0.01 0.05 -0.93 0.10 -0.15 0.09

Note: Estimates in the left (right) panel are obtained via OLS and
PPML. Results are based on 10,000 replications for N = 10.

application of a log-linear approximation in a multiplicative model can clearly be seen. In cases where the

log-linear model is unbiased, the PPML on the heteroscedastic multiplicative model shows a downward

bias of around 15%.

Table 6: Naive gravity model - Bias and Sample Size

NIPij Dij

Bias SD Bias SD

N = 10 -0.73 0.34 -0.27 0.07

N = 50 -0.77 0.17 -0.06 0.01

N = 100 -0.76 0.12 -0.03 0.00

N = 200 -0.76 0.08 -0.01 0.00

Note: All estimations are performed by PPML. Re-
sults are based on 10,000 replications.

The 63 countries included in the sample are: Albania, Argentina, Australia, Austria, Bulgaria, Bolivia,

Brazil, Canada, Switzerland, Chile, China, Colombia, Costa Rica, Cyprus, Czech Republic, Germany,

Denmark, Ecuador, Spain, Estonia, Finland, France, Great Britain, Hong Kong, Indonesia, India, Ire-

land, Iran, Iceland, Israel, Italy, Jordan, Japan, Kenya, Kyrgyzstan, Republic of Korea, Sri Lanka, Macao,

Morocco, Moldova, Mexico, Malta, Myanmar, Mongolia, Mauritius, Malawi, Malaysia, Nigeria, Nether-

lands, Norway, New Zealand, Panama, Poland, Portugal, Singapore, Sweden, Thailand, Tunisia, Turkey,

Uruguay, USA, Yemen, South Africa.
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Table 7: MC results for Scenarios (4)-(8)

N=10 N=50
NIPij Dij NIPij Dij

Bias SD Bias SD CR Bias SD Bias SD CR

vHT = 0.3

NS -2.25 0.41 -0.10 0.05 1 -2.29 0.16 -0.03 0.01 1
BV 3.03 3.88 -0.27 0.07 1 25.36 8.65 -0.11 0.02 1
2S -2.55 0.72 0.00 0.03 1 -2.35 0.18 0.00 0.01 1
RI -2.47 0.83 0.00 0.03 0.9989 -2.35 0.54 0.00 0.01 0.9839

α = −9

NS -2.52 0.49 -0.21 0.06 1 -2.58 0.22 -0.07 0.01 1
BV 1.02 4.11 -0.37 0.08 1 16.90 10.82 -0.16 0.02 1
2S -3.04 0.90 0.00 0.03 1 -2.79 0.29 0.00 0.00 1
RI -3.01 0.75 0.00 0.03 0.9976 -2.73 0.35 0.00 0.00 0.1646

vS = 9

NS -2.45 0.74 -0.06 0.13 1 -2.51 0.26 -0.02 0.03 1
BV 1.95 5.65 -0.12 0.12 1 13.67 10.30 -0.04 0.03 1
2S -2.59 0.95 0.03 0.14 1 -2.56 0.28 0.00 0.03 1
RI -2.63 0.94 0.03 0.14 0.9974 -2.55 0.48 0.00 0.03 0.9474

90% missing 50% missing

NS -2.55 0.77 0.00 0.04 1 -2.56 0.18 0.00 0.01 1
BV 0.65 19.25 -0.16 0.08 1 11.88 22.36 -0.06 0.01 1
2S -2.56 0.84 0.00 0.04 1 -2.56 0.19 0.00 0.01 1
RI -2.54 1.53 0.00 0.04 0.8698 † † † † †

Gamma

NS -2.40 1.10 -0.07 0.15 1 -2.51 0.42 -0.02 0.03 1
BV 2.09 7.56 -0.13 0.14 1 13.61 14.75 -0.04 0.03 1
2S -2.52 1.21 0.00 0.15 1 -2.55 0.44 0.00 0.03 1
RI -2.55 1.12 0.00 0.14 0.9985 -2.55 0.56 0.00 0.03 0.9608

Negative Binomial

NS -2.40 1.11 -0.07 0.15 1 -2.50 0.43 -0.02 0.03 1
BV 2.10 7.65 -0.13 0.15 1 13.59 14.93 -0.04 0.03 1
2S -2.52 1.22 0.00 0.15 1 -2.55 0.44 0.00 0.03 1
RI -2.55 1.14 0.00 0.15 0.9989 -2.55 0.56 0.00 0.03 0.9609

Note: All estimations are performed by PPML. Results are based on 10,000
replication. †: Severe convergence failure.

Table 8: Descriptive Statistics, 2000

Statistic Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

Xij 395.22 7,933.11 0.00 0.02 1.00 14.67 406,805
lnDistij 8.65 0.95 0.63 8.18 8.98 9.27 9.89
BORDERij 0.02 0.15 0 0 0 0 1
COMLANGij 0.13 0.34 0 0 0 0 1
RTAij 0.25 0.43 0 0 0 0 1

lnYi 15.42 2.12 10.11 13.85 15.86 16.77 19.89
lnYj 15.43 1.98 11.08 13.86 15.74 16.63 19.89
ln(1 +MFNj) 0.12 0.08 0.00 0.08 0.09 0.16 0.36

Note: Trade flows Xij , production Yi and consumption Yj are for ISIC Rev. 2: 311 ’Food
Products’.
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