Foreign and Domestic Growth Drivers in Eastern Europe

Enzo Weber

Universität Regensburg, OEL Regensburg, IAB Nürnberg

June 18, 2010
13th FIW-Workshop
Introduction

- Economic growth in Eastern Europe
- Transition to market economy
- Opening to world trade and finance
- Catching-up process
- Research questions:
 - What have been growth drivers in transition?
 - What are potential growth drivers?
 - Are there similarities or special patterns in Eastern Europe?
 - What changed during the crisis?
Agenda

1. Introduction
2. Growth
 - Growth Drivers
 - Modelling Economic Growth
3. Methodology
 - Time-Series Models
 - Identification
4. Application
5. Summary
Growth Drivers in Transition

- Macro approach
- Exports
- Foreign direct investment
- Capital formation
- cf. East Asian experience
Export-led growth

Potential growth effects of exports:

- Scale / specialisation (Feder 1982)
- Competition / incentives / efficiency / reallocation (Feder 1982, Helpman and Krugman 1985)
- Learning / knowledge (Grossman and Helpman 1991, Krueger 1985)
Potential growth effects of investment:

- Factor accumulation
- Technological progress (Romer 1986), embodied growth (Solow 1960)
- Interaction with ”human resources” (Lucas 1987)
Foreign Direct Investment

Potential growth effects of FDI (e.g., de Mello 1997):

- Diffusion of technology
- Management skills
- Competition (long run)
Modelling Economic Growth

- Growth effects are **delayed**.
 ⇒ Model: Dynamic!

- GDP is driven by **permanent and transitory** impulses.
 (Mixture of growth and business cycles)
 ⇒ Model: Potential long-run equilibria!

- Growth shocks are **not directly observed** / identified.
 ⇒ Model: Structural! Theory-based assumptions needed!
Long Run?!

- Non-stationary variables (include persistent components)
- Long-run equilibria due to common persistent components (cointegration)
- Number of equilibria: $r = k$—number of stochastic trends
- Cointegration testable (e.g. Johansen trace test)
Modelling Approach

Dynamic, long-run equilibria

\Rightarrow Vector error correction model (VECM):

$$
\Delta y_t = \alpha [\beta' y_{t-1} + c_1 (t-1)] + c_0 + c_2 d_t + \sum_{i=1}^{q} A_i \Delta y_{t-i} + u_t
$$

- y_t: Vector of k endogenous variables (EXP, INV, GDP)
- $\beta' y_{t-1}$: r cointegrating relations
- α: Adjustment coefficients
- $\sum_{i=1}^{q} A_i \Delta y_{t-i}$: Short-run dynamics
- u_t: Reduced-form residuals (correlated)
Short- and Long-Run Effects

- Unit impulse in u_{it}
- Responses of y_t through dynamic interaction
- Moving-average representation:

 $y_t = [deterministics] + \psi_0^* u_t + \psi_1^* u_{t-1} + \psi_2^* u_{t-2} + \ldots$

- ψ_j^*: Impulse responses
Structural VECM

- Interpretation of u_t shocks??
- Correlation modelled as linear combination: $u_t = B\varepsilon_t$
- ε_t: Uncorrelated structural shocks

$$y_t = [\text{deterministics}] + \psi_0 \varepsilon_t + \psi_1 \varepsilon_{t-1} + \psi_2 \varepsilon_{t-2} + \cdots$$

- $\psi_j = B\psi^*_j$: Structural impulse responses
Identification Problem

- $k(k - 1)$ unknown off-diagonal coefficients in B
- $k(k - 1)/2$ measurable covariances between u_{it}
- $\Rightarrow k(k - 1)/2$ assumptions needed.
- 3-variate case: $k(k - 1)/2 = 3$
Identifying Assumptions: Long Run

- Cointegration → reduced number of persistent shocks
- One transitory shock (zero long-run impact)
- Interpretation: demand shock
- Restrictions on long-run impact matrix

\[
\Xi = \begin{pmatrix}
* & * & 0 \\
* & * & 0 \\
* & * & 0
\end{pmatrix}
\]

with

\[
\Xi = \beta_\perp (\alpha'_\perp (I_n - \sum_{i=1}^{q} A_i) \beta_\perp)^{-1} \alpha'_\perp
\]

- Number of restrictions = \(k - r \)
Identifying Assumptions: Short Run

- Remaining restrictions on impact matrix B
- Disentangle permanent export and investment shocks!
- Shocks to investment unrestricted (business cycle forerunner)
- Exports in the short run determined by foreign demand
- \rightarrow No contemporaneous impact of investment (and demand) shocks on exports

$$B = \begin{pmatrix} * & 0 & */0 \\ * & * & * \\ * & * & * \end{pmatrix}$$
Data I

- GDP, GCF, EXP, FDI
- 2002 per capita PPP US dollar
- Countries: CZE, EST, HUN, LAT, LIT, POL, RUS, SLO
Figure: Seasonally adjusted real p.c. GDPs
Cointegration Tests

EXP,GCF,GDP model:

<table>
<thead>
<tr>
<th></th>
<th>CZE</th>
<th>EST</th>
<th>HUN</th>
<th>LAT</th>
<th>LIT</th>
<th>POL</th>
<th>SLO</th>
<th>RUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_0 : r = 0$</td>
<td>0.0</td>
<td>0.0</td>
<td>2.7</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
<td>2.3</td>
<td>0.0</td>
</tr>
<tr>
<td>$H_0 : r = 1$</td>
<td>1.9</td>
<td>64.3</td>
<td>44.9</td>
<td>4.4</td>
<td>81.9</td>
<td>20.5</td>
<td>35.2</td>
<td>22.0</td>
</tr>
</tbody>
</table>

Trace test p-values in %

EXP,FDI,GDP model:

<table>
<thead>
<tr>
<th></th>
<th>CZE</th>
<th>EST</th>
<th>HUN</th>
<th>LAT</th>
<th>LIT</th>
<th>POL</th>
<th>SLO</th>
<th>RUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$H_0 : r = 0$</td>
<td>1.4</td>
<td>6.8</td>
<td>–</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.2</td>
<td>0.3</td>
</tr>
<tr>
<td>$H_0 : r = 1$</td>
<td>4.8</td>
<td>79.2</td>
<td>–</td>
<td>13.1</td>
<td>47.3</td>
<td>19.9</td>
<td>7.4</td>
<td>25.1</td>
</tr>
</tbody>
</table>

⇒ 1 cointegrating relation (CZE, LAT: 2)
Cointegrating Vectors

EXP, GCF, GDP model:

<table>
<thead>
<tr>
<th></th>
<th>CZE</th>
<th>EST</th>
<th>HUN</th>
<th>LAT</th>
<th>LIT</th>
<th>POL</th>
<th>SLO</th>
<th>RUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>GCF</td>
<td>0</td>
<td>1</td>
<td>5.63 (0.76)</td>
<td>22.2 (4.06)</td>
<td>0</td>
<td>1</td>
<td>3.44 (0.46)</td>
<td>1.95 (0.24)</td>
</tr>
<tr>
<td>GDP</td>
<td>-1.49 (0.20)</td>
<td>-0.32 (0.06)</td>
<td>-4.56 (0.52)</td>
<td>-6.14 (0.95)</td>
<td>-0.43 (0.09)</td>
<td>-0.53 (0.04)</td>
<td>-2.87 (0.28)</td>
<td>-1.92 (0.23)</td>
</tr>
</tbody>
</table>

standard errors in parentheses

EXP, FDI, GDP model:

<table>
<thead>
<tr>
<th></th>
<th>CZE</th>
<th>EST</th>
<th>HUN</th>
<th>LAT</th>
<th>LIT</th>
<th>POL</th>
<th>SLO</th>
<th>RUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FDI</td>
<td>0</td>
<td>1</td>
<td>35.7 (6.02)</td>
<td>-</td>
<td>0</td>
<td>1</td>
<td>10.5 (1.27)</td>
<td>3.48 (1.91)</td>
</tr>
<tr>
<td>GDP</td>
<td>-1.40 (0.05)</td>
<td>-0.10 (0.02)</td>
<td>-15.0 (3.87)</td>
<td>-0.46 (0.09)</td>
<td>-0.21 (0.02)</td>
<td>-1.95 (0.30)</td>
<td>-4.95 (0.48)</td>
<td>-1.97 (0.28)</td>
</tr>
</tbody>
</table>

⇒ Positive equilibria
GDP Long-Run Effects of Structural Unit Shocks

EXP,GCF,GDP model:

<table>
<thead>
<tr>
<th></th>
<th>CZE</th>
<th>EST</th>
<th>HUN</th>
<th>LAT</th>
<th>LIT</th>
<th>POL</th>
<th>SLO</th>
<th>RUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
<td>0.73 (0.19)</td>
<td>0.50 (0.11)</td>
<td>0.05 (0.11)</td>
<td>1.97 (0.54)</td>
<td>0.77 (0.20)</td>
<td>0.59 (0.20)</td>
<td>0.94 (0.27)</td>
<td>0.73 (0.28)</td>
</tr>
<tr>
<td>GCF</td>
<td>0.54 (2.35)</td>
<td>1.10 (0.22)</td>
<td>3.01 (0.49)</td>
<td>1.19 (0.37)</td>
<td>1.43 (0.26)</td>
<td>0.89 (0.14)</td>
<td>0.68 (0.27)</td>
<td>4.18 (2.81)</td>
</tr>
<tr>
<td>FEVD</td>
<td>99/1</td>
<td>44/56</td>
<td>0/100</td>
<td>66/34</td>
<td>55/45</td>
<td>15/85</td>
<td>85/15</td>
<td>21/79</td>
</tr>
</tbody>
</table>

bootstrapped standard errors in parentheses

FEVD: long-run GDP variance decomposition

EXP,FDI,GDP model:

<table>
<thead>
<tr>
<th></th>
<th>CZE</th>
<th>EST</th>
<th>HUN</th>
<th>LAT</th>
<th>LIT</th>
<th>POL</th>
<th>SLO</th>
<th>RUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXP</td>
<td>1.12 (0.41)</td>
<td>0.57 (0.16)</td>
<td>—</td>
<td>1.45 (0.56)</td>
<td>0.63 (0.26)</td>
<td>0.43 (0.12)</td>
<td>0.81 (0.26)</td>
<td>0.83 (0.35)</td>
</tr>
<tr>
<td>FDI</td>
<td>-1.09 (1.92)</td>
<td>4.50 (4.35)</td>
<td>—</td>
<td>2.61 (0.61)</td>
<td>3.33 (0.57)</td>
<td>0.66 (0.16)</td>
<td>0.54 (0.60)</td>
<td>9.05 (3.76)</td>
</tr>
<tr>
<td>FEVD</td>
<td>96/4</td>
<td>59/41</td>
<td>—</td>
<td>36/64</td>
<td>44/56</td>
<td>25/75</td>
<td>92/8</td>
<td>27/73</td>
</tr>
</tbody>
</table>
GDP rises with export dependence:

- High potential FDI impacts
- HUN, POL, RUS: Prevalent role of investment
- EST, LIT: non-manifested potential of GCF
Comparison to Asia Pacific

- Weber (2009, *JJIE*): AUS, HK, IDN, JPN, KOR, MAL, NZL, PLP, SGP, THL, TWN
- Dependence on investment higher than on exports (except HK, SGP, THL)
- Investment effects higher than export effects, especially for industrialised countries
- Export effects relatively higher in developing countries
Exports and the Crisis

Figure: Structural shocks (mean) and GDP loss vs. export shocks
Potential and historical growth drivers in Eastern European transition
Large differences between countries
Export orientation goes along with high GDP.
High potential impacts of FDI
Crisis effects through exports